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Abstract—Our work is motivated by humanitarian assistant
and disaster relief (HADR) where often it is critical to find
signs of life in the presence of conflicting criteria, objectives, and
information. We believe ergodic search can provide a frame-
work for exploiting available information as well as exploring
for new information in applications such as HADR. Existing
ergodic search methods typically consider search using only a
single information map. However, one can readily envision many
scenarios where multiple information maps that encode different
types of relevant information are used. Ergodic search methods
currently do not possess the ability to simultaneously search
multiple information maps, nor do they have a way to balance
which information gets priority. This leads us to formulate a
Multi-Objective Ergodic Search (MO-ES) problem, which aims
to find the so-called Pareto-optimal solutions, for the purpose of
providing human decision makers various solutions that trade
off among conflicting criteria. To efficiently solve MO-ES, we
develop a framework called Sequential Local Ergodic Search
(SL-ES), which leverages the recent advances in ergodic search
methods as well as the idea of local optimization to efficiently
compute Pareto-optimal solutions. Our numerical results show
that SL-ES computes solutions of better quality and runs faster
than the baselines.

Index Terms—Motion and Path Planning, Optimization and
Optimal Control, Ergodic Search

I. INTRODUCTION

This paper considers a trajectory planning problem for
area search, which arises in applications such as search and
rescue [1]], [2l], environment monitoring [3]], target localiza-
tion [4]], [S]. Given an information map (hereafter abbreviated
as info map), which describes the prior knowledge in form
of a distribution over the area to be searched, the problem
requires planning a trajectory to efficiently gather information.
Common approaches to this problem span a spectrum from
spatial decomposition methods [6]—[8], which uniformly cover
the area, to information-theoretic approaches [3]], [9], which
greedily move the robot to the next location with the highest
information gain. This paper is interested in the middle of the
spectrum with a type of search called ergodic search [[10]—[[12]].
Ergodic search optimizes an ergodic metric to plan trajectories
along which the time spent in a region is proportional to
the amount of information in that region. Ergodic search
inherently balances exploitation (i.e., myopically searching
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high-information areas) and exploration (i.e., attempting to
visit all possible locations for new information), and is thus
able to intelligently determine the robot motion to collect
information in the long term.

Existing ergodic search algorithms [[10]-[12] consider cov-
ering only a single info map. However, one can envision
scenarios where multiple different info maps, each of which
encodes one type of information, may need to be searched
simultaneously. Each info map corresponds to an objective
to be optimized and hence multi-objective optimization. As
an example, consider a hazardous material warehouse with
leakage where a robot is deployed to search for both survivors
and leakage sources (Fig. [T] (a)). Multiple info maps describ-
ing probable locations of survivors and leakage sources are
required to be simultaneously covered. This problem is truly
multi-objective in the sense that multiple info maps cannot be
combined, say as a linear combination of info maps, as the
weights, and hence their relative importance, is not known.

In this paper, we formulate a Multi-Objective Ergodic
Search (MO-ES) problem, whose solutions are trajectories that
can simultaneously cover multiple info maps. In general, there
is no single trajectory that optimizes the ergodic metrics with
regard to all info maps at the same time. Thus, this paper
seeks to find a set of Pareto-optimal solutions (trajectories): a
solution is Pareto-optimal if one can not improve the ergodic
metric with respect to one info map without deteriorating
the ergodic metric with regard to at least one of the other
info maps. We believe the visualization of a set of Pareto-
optimal solutions can help the human decision makers (who
are often involved in the task [2], [13]]) make more informed
decisions based on their domain knowledge.

Existing approaches that can be used to solve MO-ES
include general-purpose multi-objective genetic algorithms
(MOGA) [14]-[16]]. While being applicable to various prob-
lems, MOGAs typically fail to leverage the underlying struc-
ture of MO-ES problems (such as the dynamics of the robot
and local metric structures e.g., convexity), which can make
them inefficient to optimize. Another existing approach is the
scalarization method [[15]], [[17], which can be applied to solve
MO-ES by sampling a set of weight vectors, computing the
weighted-sum of the objectives for each weight vector, and
running a single-objective algorithm to optimize the scalarized
objective function. While being able to leverage the existing
single-objective algorithms, the scalarization method can be
time-consuming as it optimizes for each weight vector in order
to obtain a set of Pareto-optimal solutions.

This paper develops a framework called Sequential Local
Ergodic Search (SL-ES) to quickly obtain a set of Pareto-
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Fig. 1. A visualization of the MO-ES problem and our method. (a) shows
a hazardous material warehouse with leakage, where colored areas indicate
different types of information/targets such as survivors, leakage sources, etc.
Each type of information is represented as an info map. (b) shows the weight
space B in the presence of three objectives, where w(?) is the relative weight
of the corresponding info map ¢@, with i = 1,2, 3. (c) shows the scalarized
info map ¢’, which is the weighted-sum of all three info maps. An ergodic
trajectory is planned with respect to ¢’. (d) shows the objective space, where
each element is an ergodic vector that describes the ergodic metric of the
computed trajectory with respect to M 62 $3) The computed ergodic
vectors are guaranteed to be Pareto-optimal.

optimal solutions, and the framework is conceptually visu-
alized in Fig. [T} First, SL-ES uses a set of weight vectors,
and computes a scalarized info map by taking the weighted-
sum of the info maps to be covered using each weight vec-
tor. The idea of scalarizing info maps (rather than objective
functions) allows us to leverage the existing various (single-
objective) ergodic search algorithms. We formally prove that
optimizing the ergodic metric of a trajectory with respect to
a scalarized info map yields a trajectory that is guaranteed
to be Pareto-optimal. Furthermore, SL-ES leverages the idea
of local optimization based on the inherent convexity of
the ergodic metric in the Fourier coefficient space. SL-ES
samples weight vectors from the weight space (i.e., the space
that contains all possible weight vectors) in a breadth-first
manner by (i) episodically sampling new weight vectors in the
neighborhood of the current weight vector, and (ii) optimizing
the trajectory corresponding to the new weight vector by using
the current solution as the initial guess (to warm-start the
optimization). Finally, to expedite the computation, we also
develop a variant called Adaptive SL-ES (A-SL-ES), which
can adjust the density of the sampled weight vectors based on
the similarity of the info maps in the Fourier coefficient space.
Our numerical results show that SL-ES and A-SL-ES compute
a set of solution trajectories with better ergodic metrics than
applying MOGAs to MO-ES. Additionally, SL-ES and A-

SL-ES require less than half of the run time of a naive
scalarization method that does not leverage local optimization.
We simulate our method in a hazardous material warehouse
in ROS/Gazebo, and verify that the planned trajectory can be
executed on physical robots.

The prior version of this work has appeared in [18]]. Dif-
ferent from [18], this paper generalizes the method into a
framework with solution quality guarantees by (i) proving the
Pareto-optimality of the computed solutions by SL-ES and A-
SL-ES, (ii) extending the method from single-agent to multi-
agent, and (iii) providing more numerical results in various
info maps, discussion and physical robot demonstrations. The
rest of this paper is organized as follows. Sec. [[-A] reviews
related work and Sec. [[I] introduces basic concepts and the
problem definition. We then elaborate the method in Sec. [ITI]
and prove the property of the method in Sec. [V} Finally, we
discuss the results in Sec. [V] and conclude in Sec. [V1l

A. Other Related Work

1) Ergodic Coverage: A trajectory is ergodic with respect
to an info map if the amount of time spent in a region
is proportional to the amount of information in that region.
Ergodic metrics, such as [10]], measure how far a trajectory is
from being ergodic, and by iteratively minimizing the metric,
an ergodic trajectory can be computed. Ergodic trajectory
planning has been investigated within the framework of re-
ceding horizon control [11]], stochastic optimization [19], and
has been leveraged for active learning and search [12], [20],
[21]], decentralized exploration [22], real-time area coverage
and target localization [23], etc. However, we are not aware
of any ergodic search method that considers covering multiple
info maps at the same time, which is the focus of this paper.

2) Multi-Objective Optimization: Multi-Objective Opti-
mization (MOO) is a broad topic [15], [[17] and has been inves-
tigated in robotics-related problems such as path planning [24],
[25]], reinforcement learning [26]], design [27] and multi-agent
systems [28]]. With respect to MOO for search tasks, existing
work has considered simultaneously optimizing exploration
and exploitation for environment monitoring tasks [3[. In [1],
a trajectory is planned to cover a single info map using
the ergodic metric, while other “non-ergodic” objectives are
considered by using e-constraints. Different from [1]], this
paper aims to plan ergodic trajectories to cover multiple info
maps, where each info map corresponds to an objective.

II. PRELIMINARIES

A. Ergodic Metric

Let W=[0,L1] x [0,Ls] x --- x [0,L,] CR”,v € {2,3}
denote a v-dimensional workspace that is to be explored by
the robot. The robot has an n-dimensional state space (n > v),
and let ¢, : [0,7] — R™ denote a trajectory in the state
space with T' € R representing the time horizon. The robot
has deterministic dynamics given by ¢, (t) = f(gn(t),u(t)),
where u(t) is the control input of the robot. Additionally,
for each trajectory gq,, let ¢ [0,T] — W denote the
corresponding trajectory in the workspace (instead of in the
state space).
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Let ¢(x,q),z € W denote the time-averaged statistics of a
trajectory ¢, which is defined as:

o.a) = 7 [ 8o —a(r)ar, m

where ¢ is a Dirac function. Let ¢ : YW — R denote a static
info map that describes the amount of information at each
location in the workspace. Each info map is a probability
distribution with [, ¢ = 1 and ¢(z) > 0,Yz € W. An
ergodic metric [10] between c¢(z,q) and an info map ¢ is
defined as:

Ai(ce — on)?

M=

E(d,q) =
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where (i) ¢ = [, ¢(x)Fy(x)dx represents the Fourier coeffi-
. . . v kjrr 7 .
cients of the info map, with Fj(q) = }lenjzl cos(qu) being
the cosine basis function for some index k¥ € N” and K being
the number of Fourier bases considered, (ii) ¢, denotes the
Fourier coefficient of ¢(z, q), (iii) hi denotes the normalization

factor as defined in [10], and (iv) A\ = (1 + ||k||2)’yz1

denotes the weight for each corresponding Fourier coefficient.
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B. Ergodic Vector and Pareto-Optimality

This paper seeks to plan robot trajectories to simulta-
neously cover multiple (static) info maps. For clarity, we
use the superscript in ¢ to denote a specific info map,
with ¢ € {1,2,---,m} where m is a finite number in-
dicating the total number of the info maps to be covered.
Let £(q) = (£(¢M,q),£(¢?),q), -+ ,E(¢'™, q)) denote an
ergodic vector, which describes the ergodic metrics of the
trajectory ¢ with respect to all info maps. Each component of
£ (q) corresponds to an objective function to be minimized. To
compare any two trajectories, we compare the ergodic vectors
corresponding to them using the dominance relation from the
multi-objective optimization literature.

Definition 1 (Dominance [17]). Given two vectors a and b
of length m, a dominates b, notationally a > b, if and only
lfa(J) < b(j): vj e {1727"' ’m} and a(]) < b(j)’ Jj €
{1,2,---,m}.

If a does not dominate b, this non-dominance is denoted
as a % b. Given two trajectories g1, ¢ (with the same time
horizon [0,77), we say ¢; dominates g2 (denoted as q; > g2)
if £(q1) = E(q2). Any two trajectories are non-dominated
to each other if the corresponding ergodic vectors do not
dominate each other. Among all feasible trajectories, the set
of all non-dominated trajectories is called the Pareto-optimal
(solution) set, and the set of the corresponding ergodic vectors

is called the Pareto-optimal front.

C. Problem Statement

This paper considers the following Multi-Objective Ergodic
Search (MO-ES) problem. Given a set of info maps and

w®

(@ (b)

Fig. 2. Examples of the weight space B when (a) m = 2 and (b) m = 3.
Symbol w(?) stands for the i-th component of a weight vector 0.

the dynamics of the robot, the goal is to compute a set of
dynamically feasible trajectories, whose corresponding ergodic
vectors are Pareto-optimal.

Remark 1. We first focus on the single-agent version of the
problem in an obstacle-free workspace. We will discuss the
extension to the multi-agent setting in Sec.

III. METHOD

A. Basic Concepts and Overview

Let B := {@,w > 0,i = 1,2,--- ,m, |||, = 1}
denote the space of possible weight vectors, which is hereafter
referred to as the weight space. The weight space is the
first quadrant of the m-dimensional ¢;-norm unit sphere.
For clarity, we use the superscript in w® to denote the
i-th component of the weight vector w € B, which is
consistent with the superscript notation in ¢(). Examples of
B when m = 2,3 are shown in Fig. An info map ¢
can be decomposed with respect to (abbreviated as w.r.t.) a
set of Fourier bases as ¢ = ZkK:ngSka, where ¢ denotes
the Fourier coefficient corresponding to each Fourier basis
function Fy,k € {0,1,2,--- ,K}. In practice, K is often
selected to be a finite number instead of infinity.

Given a weight vector W € B, we choose to scalarize the
info maps, as opposed to scalarizing the objective functions
£(q), by taking the weighted sum of the info maps to be
covered. By doing so, the existing ergodic search methods that
consider a single info map can be leveraged. We will discuss
this in detail later. This scalarized info map can be represented
as the weighted-sum of the corresponding Fourier coefficients:

K
¢ =) L
k=0
=3 w@p® =3 w® (Z ¢§;)Fk> BN )
i=1 1=1 k=0
For each k € {0,1,--- ,K}:
o= wiey) =a- o, “)
=1

M), @ =

stands for the dot product.

where @, = (¢;(€1)7 22)7"‘
(D, w®, . ™), and -
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The ergodic metric of g, whose time averaged statistics is
described as a set of Fourier coefficients ¢y, w.r.t. ¢ is

K
EW@.q) = lek — )
k=0

K
=3 Milox — @ By)? 5)
k=0

To obtain a set of Pareto-optimal trajectories, this paper
develops a framework (Fig. [T): intuitively, in each planning
episode, a u/ is sampled from 55 and a corresponding scalarized
info map ¢’ is computed with . Then, an ergodic trajectory
w.r.t. ¢ is planned by minimizing £(¢’,¢) in (5). Note that,
instead of using the weight vector w to scalarize the ergodic
vector (i.e., the objective vector) € as introduced in Sec.
our framework scalarizes the info maps, which allows us to
leverage the existing (single-objective) ergodic search algo-
rithms to cover the scalarized info map. We will prove in
Sec. that the trajectories computed by our framework are
Pareto-optimal.

Also note that, with a given initial state of the robot ¢(0)
and a control u(¢), a unique trajectory can be specified (via the
so-called forward simulation). Thus, for presentation purposes,
we use a control u(t),t € [0,T] to identify a trajectory, and
let u(t)|s denote the ergodic trajectory computed w.r.t. the
scalarized info map based on . In other words, for each w €
B, a corresponding ergodic trajectory u(t)|z can be computed.

Additionally, with @ we can observe that:

e (¢, q) (i.e., the objective function to be minimized after
scalarizing the info maps) is a convex function w.r.t. W
and cg.

o Although c¢; is non-convex with respect to u(t) due
to the robot dynamics and the Fourier bases, existing
ergodic search algorithms [[10], [[12], [23]] have shown that
this non-convexity can be handled by iterative gradient
descent optimization in practice.

Based on these observations, we take the view that a set of
trajectories can be efficiently obtained by episodically sam-
pling new  in the neighborhood of the current weight vector,
and running local optimization in each episode. Following this
idea, we propose a framework called Sequential Local Ergodic
Search (SL-ES), which is explained in the next section.

B. Sequential Local Ergodic Search (SL-ES)

Intuitively, SL-ES covers (or say explores) the weight space
B from some initial weight vector w;,;; in a breadth-first
manner in order to compute a set of Pareto-optimal solu-
tions. SL-ES iteratively (i) scalarizes the info maps based
on the current weight vector j, (ii) leverages regular (single-
objective) ergodic search to compute a trajectory (represented
by u(t)|s), and (iii) samples new weight vectors ' from B
in the neighborhood of 1 and uses u(t)|s as an initial guess
to optimize the ergodic trajectory corresponding to w’. The
above process iterates until 3 has been fully explored by the
sampled weight vectors.

Specifically, as shown in Alg. [I, SL-ES begins by initial-
izing a weight vector w;,;; (Line 1), which can be either

Algorithm 1 Pseudocode for SL-ES
1: Winit < InitWeight()
2: uinit(t”iﬁmu =0
3: CLOSED < 0, S + 0
4: OPEN < {tWini}
5: while OPEN is not empty do
6.
7
8

w < OPEN.pop()
Compute {¢},,Vk € {0,1--- , K}} with w and
: u(t)|g < ErgodicSearch({¢1,}, winit(t)|w)
9: Add % into CLOSED
10 Add u(t)|s into S
11: for all @' € Neighbor(w) do

12: if @’ ¢ OPEN U CLOSED then
13: umit(t)h;/ — u(t)\,ﬁ
14: OPEN.push(w")

15: return S and the corresponding ergodic vectors

randomly sampled from B, or specified by the user based on
the domain knowledge of the specific application. An initial
control w;n;t(t)|g,,,, corresponding to @ is also initialized
(Line 2), which will later be used as the initial guess for the
first episode of the ergodic search. Let OPEN denote a first-in-
first-out queue containing candidate weight vectors that need
expansion, and expanding a weight vector & means computing
u(t)|z and sampling new weight vectors in the neighborhood
of w. Let CLOSED denote a set of weight vectors that have
been expanded, and let S denote the set of corresponding
u(t)| for each 1 € CLOSED that have been computed at any
time during the computation. Initially, CLOSED and & are all
initialized as empty sets (Line 3) and OPEN is initialized by
adding wW;,;; (Line 4).

In each planning episode (Lines 5-14), a weight vector
is popped from OPEN and the corresponding scalarized info
map ¢’ is computed based on @), which is represented by its
Fourier coefficients (Line 7). Then, a regular ergodic search
algorithm is invoked to cover ¢, which iteratively minimizes
from the initial guess wn(t)|s (see Sec. II-C). The
computed solution trajectory (represented by u(t)|z) as well
as the corresponding « are then added to S and CLOSED
respectively. Finally, neighbor weight vectors of & in B are
sampled (see Sec. and and is represented by
Neighbor(w). For each w' € Neighbor(w), if W' has not been
generated yet (i.e., @ ¢ OPEN U CLOSED), w’ is added to
OPEN for future expansion.

SL-ES terminates when OPEN is empty, which indicates
that 3 has been fully covered by the sampled weight vectors.
At termination, S is returned (Line 15), which contains a
set of control trajectories along with the ergodic vectors
corresponding to these trajectories, which are Pareto-optimal.

C. Ergodic Search Procedure

A benefit of SL-ES is its ability to leverage existing ergodic
search algorithms to cover ¢’ in procedure ErgodicSearch
within each planning episode. This paper leverages the existing
approach in [22], which iteratively minimizes the ergodic
metric as introduced in (5) within an optimal control frame-
work, and is able to handle general non-linear dynamics of
the robot. Other ergodic planners, such as [10], [23], [29],
can also be used to implement the ErgodicSearch procedure
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Neighbor weight vectors

Fig. 3. (a) shows the basic sampling method in the weight space . (b) shows
the adaptive sampling method in the affine transformed weight space B’. Each
sampled point in B’ can be affine transformed to a (valid) weight vector in

within the framework of SL-ES, in order to handle real-time
requirements on computation or obstacle avoidance constraints
in the workspace.

In each planning episode, SL-ES invokes ErgodicSearch
with a specific initial guess w;p;t|s, instead of using a random
or zero control as the initial guess. Specifically, this initial
guess is set to be a solution u(¢)|z computed in the previous
episodes, whose corresponding weight vector ' is close to
the current weight vector « in the weight space B. As shown
in Sec. [V), this “local optimization” strategy often expedites
the overall planning in practice in comparison with a naive
scalarization method, which uses u(t) = 0 as the initial guess
for each episode.

D. Basic Version of Neighbor Sampling

While SL-ES is general to arbitrary m > 1, to simplify
the presentation, we limit our focus to m = 2,3. Given a
weight vector w € B3, this paper takes a deterministic sampling
strategy with a hyper-parameter d denoting the sampling step
size. When m = 2, B is a closed line segment, and the
neighbors of a given w are defined to be the weight vectors
that is of distance d away from « along the line segment.
When m = 3, B C R? is the closed set enclosed by a triangle
as shown in Fig. [2b). The neighbors of a given « are defined
to be the four weight vectors that are of distance d away from
w along the four cardinal directions, as shown in Fig. [3|a).

In general, B is the first quadrant of the m-dimensional ¢;-
norm unit sphere, which is an (m — 1)-dimensional bounded
closed set. In other words, B is an (m — 1)-simplex, and
each corner point of 5 corresponds to an info map to be
covered. Since B is bounded, the aforementioned deterministic
sampling strategy generates a finite number of weight vectors
from B, and SL-ES is guaranteed to terminate when all
these sampled weight vectors are expanded. Additionally, this

sampling method can be generalized to m > 3. However, the
total number of possible samples grows exponentially w.r.t. m,
and we leave this potential scalability issue (when m is large)
to our future work.

A limitation of this deterministic sampling strategy is that
it does not consider the similarity between info maps to be
covered. For example, if two info maps to be covered are
similar (or very different) to each other, then only a few
(or a lot of) weight vectors are needed in order to obtain a
good representation of the Pareto-optimal front. We handle
this limitation in the ensuing section.

E. Adaptive Neighbor Sampling

This section develops an adaptive neighbor sampling
method, which can adjust the density of samples based on
the similarity of info maps to be covered. Let £(*7) denote a
metric of similarity between two info maps ¢(9,¢() in the
Fourier coefficient space, which resembles the ergodic metric
between a trajectory and an info map [10]:

K
£ = |3 Mlof) - o) ©)
k=0

For example, in Fig. [8](a), info maps ¢) and ¢®) are similar
to each other and £1%) is small, while ¢(!) and ¢ are
different from each other and £(2) is large.

Then, an affine transformed weight space B’ is constructed
as follows. Let B’ be an (m —1)-simplex where (i) each corner
point of B’ corresponds to an info map ¢(*), and (ii) the line
segment connecting two corner points (corresponding to ¢(*)
and () has length £(+7). B’ exists as the ergodic metric in
@, which defines the length of each edge of the simplex 5,
is a Sobolev metric [10] and satisfies the triangle inequality

After specifying a coordinate system to both B’ and B, an
affine transformation A : B’ — B can be found by associating
each pair of corner points (p,p’),p € B,p’ € B’. For each
p’ € B, a corresponding point A(p’) € B can be found, and
the corresponding weight vector @ can be obtained based on
the coordinate of A(p’). Let Ag(p'),p’ € B’ denote the map
from the coordinate of a point p’ € B’ to the actual weight
vector «w that will be used to scalarize the info maps, and let
Agjl(zﬂ), W € B denote the inverse map from a weight vector
W to the coordinate of a point in '

An example when m = 3 is shown in Fig. [3| (b). B is a
triangle, where the three enclosing line segments have lengths
£2) £(23) (1) regpectively. A possible coordinate system
for B’ is to place the origin at point ' € B, align the x-axis
with line segment 2/y/. Then point i has coordinate (£(1:2)0)
and the coordinate of point 2z’ can be determined since the

IFirst, in practice, since K in (@) is often selected as a finite number, the
Fourier coefficients ¢,  of any information map ¢ that appears in must be
zero for all k > K, so that (6) remains a metric and the triangle Inequality
holds. Second, it is possible that B’ degenerates and is of dimension less than
(m—1). (For example, when m = 3, the (m — 1)-simplex is a triangle. If the
three corner points of the triangle are co-linear, the triangle degenerates into
a line segment.) For a degenerate case, the proposed adaptive sampling is not
applicable while the basic sampling in Sec. still works. For the rest of
the presentation, we consider the case where the constructed (m — 1)-simplex
is non-degenerate.
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Algorithm 2 Pseudocode for AdaptiveNeighbor (i)
0«0
s p — AN (W)
- A« {(0,d"),(0,—=d"),(d’,0),(—=d’,0)}
: for all 6 € A do
Prew <D +0
if e, ¢ B then

continue
Add Az (prew) to O

return O

—_

> The output, a set of weight vectors.

>m=3

© RN R R

length of 2’2’ and y'z’ are both known. With equations
x = Al@),y = AY),z = A(Z), the affine map A can
be determined.

With 5’ and the map A5, SL-ES can sample points from B’
(instead of directly sampling weight vectors from 13), and each
sampled point p’ € B’ can be transformed into a (valid) weight
vector w € B, which is then used to compute a scalarized info
map. Specifically, as shown in Alg. [2] let O denote the set of
sampled weight vectors, which is initialized as an empty set,
and let A denote the set of possible differences between two
neighboring points in B3’ using the aforementioned determin-
istic sampling strategy. Here, we use d’ to denote the step size
to note the difference from the d in the previous section. Note
that, Line 3 in Alg. 2] only shows the A when m = 3. For
each 0 € A, a neighbor point p),,,, < p’+0 is generated. If p’
is still within B’, the corresponding weight vector Ag(p),..,)
is added to O. Finally, set O is returned, which contains all
sampled neighbor weight vectors. Here, 13 is constructed by
considering the difference between info maps, and sampling
from B’ allows SL-ES to adapt the sampling density to the
difference between info maps, which is verified in Sec. E

F. Discussion

1) Earlier Termination: In practice, when a strong prior
preference between info maps (represented by w;,;;) is avail-
able, the termination condition of SL-ES can be modified so
that SL-ES terminates earlier when a certain neighborhood of
W;nse has been explored. Note that SL-ES explores the weight
space B in a breadth-first manner, and thus SL-ES explores the
neighborhood around w;,;; in B at first. This allows SL-ES
to quickly compute a set of Pareto-optimal solutions that is
“centered” on the prior preference of the user.

2) Weight Space Coverage: SL-ES can be regarded as a
framework that converts an MO-ES problem into a “weight
space coverage problem”: SL-ES iteratively samples weight
vectors from B and terminates when the entire weight space
B is covered. The adaptive sampling method transforms 5
into B’ based on the ergodic metrics between info maps and
then covers B’. Note that other types of transformation (e.g.
non-linear transformation) or different sampling methods can
also be leveraged based on the domain knowledge of the
application within the proposed SL-ES framework.

G. Extension to Multiple Agents

Let j = 1,2,--- N denote a set of N homogeneous
agents, let ¢; denote a trajectory of agent j in the workspace.

For the purpose of presentation, within this section, let ¢ :=
{q1,92, -+ ,qn} denote a joint trajectory of all agents, where
each g; € ¢ has the same time horizon. Similarly to [10],
[22], the Fourier coefficients of the time-averaged statistics of
a trajectory defined in (I)) can be extended to multiple agents
by taking the average over all agents:

11 (7T
) =y g [ R0

Then, the extension of the ergodic metric to multiple agents
remains the same as in , where cj, is now computed based
on (7):

K
E(b,q) =Y Arlek — on)?

k=0
2 (8)
K 1 N 1 T
Y325 | Al -a
k=0 j=1

Finally, the underlying single-objective ergodic search algo-
rithm used by SL-ES and A-SL-ES can be replaced by a
multi-agent algorithm, such as [[10], [22], in order to address
collision avoidance or communication limitation constraints
among the agents if needed. The rest part of our framework
remains the same. For a multi-agent system, the computed
solution (i.e., a joint trajectory) is still guaranteed to be Pareto-
optimal (as analyzed in Sec. as long as the underlying
multi-agent ergodic search algorithm can minimize with
respect to a scalarized info map subject to the agent-agent
constraints.

This extension to multiple agents does not consider hetero-
geneity among agents where each agent has diverse capability
to search different info maps, which is beyond the scope of
this work.

IV. ANALYSIS

This section proves that the trajectories computed by SL-ES
and A-SL-ES are guaranteed to be Pareto-optimal to the
MO-ES problem. We begin with a review of the existing
scalarization techniques in the MOO literature [17]] which is
leveraged here, and then present our proof.

A. Mathematical Preliminaries

Given a weight vector W/ € B, let &, denote the weighted-
sum of the ergodic vector £, which is defined as follows:

m

Eu(q) =Y wVEGY, q). ©)
=1

Note that £,(q) is the weighted-sum of the ergodic metrics
E(@W q),i = 1,2,---,m, while the £(¢',q) defined in
is the ergodic metric with respect to the scalarized map ¢’.

Proposition 1. For a weight vector @ € B with w® > 0,Vi =
1,2,-+- ,m, let ¢* be a trajectory that minimizes £,,(q), then
q* is a Pareto-optimal solution, i.e., the corresponding ergodic

—

vector E(q*) belongs to the Pareto-optimal front.
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This proposition is borrowed from Chapter 3 in [[17]], where
a detailed proof can be found. We present the main idea here
to make the paper self-contained. We prove by contradiction.
Assume that € (¢*) is not Pareto-optimal. Then, there exists
another trajectory ¢’ such that £(¢') = £(q*). Thus, £,(q) =
Yt wE@D, ¢) < Y wWEBY, ¢%) = Eu(q*). The
above inequality holds due to the definition of dominance
(Def. and that w® > 0,¥i = 1,2,---,m. It means
that ¢* does not minimize function &, (¢), which leads to
contradiction.

B. Pareto-Optimality

Given a trajectory ¢, let ci(gq) denote the Fourier coeffi-
cients of ¢ as described in Sec. The idea of the proof
is to first calculate the difference &, (q) — £(¢', q¢), which is
independent of ¢. Therefore, minimizing &, (g) is equivalent to
minimizing £(¢’, q), i.e., when £(¢’, ¢) reaches the minimum
for a certain ¢, £,(q) also reaches the minimum. Then, since
the trajectories computed by SL-ES and A-SL-ES minimize
E(¢',q), these trajectories minimize £,(q) and are Pareto-
optimal according to Proposition [I]

Proposition 2. Let q. denote a trajectory that minimizes

E(¢',q), then q. also minimizes E,(q).

Proof. The difference £, (q) —
Euwlq) —£(¢',q)

E(¢',q) is given by

2
(z)(b(w) ( (i)¢(i)> )
e+ (3
D~ 2ek(q Zw( >¢(z +Zw z)¢(z) >
2
_ Z/\,c (c — 2¢k(q Zw< )¢< (Z (i)¢§:)> )

=1
m 2
i) 4 (i)2 i) (i
_Z)\k (Z ()¢I(€) _ (Zw( )Qs](c)) > ’
=1 1=1
which is independent of q. Therefore, if g, is a trajectory that
minimizes £(¢’, q), then ¢, also minimizes &, (q). O
Theorem 1. For a weight vector @ € B with w" > 0,Vi =

1,2,--- ,m, the trajectory computed by SL-ES and A-SL-ES
is Pareto-optimal.

Proof. With Proposition [I| and [2} if a trajectory ¢ minimizes
E(¢d',q), then ¢ is Pareto-optimal to the MO-ES problem.
By design, both SL-ES and A-SL-ES leverage ergodic search
algorithms (Line 8 in Alg. [I) to minimize £,(q) and the
resulting trajectory is thus Pareto-optimal.

O

Remark 2. Note that the scalarization method in [17] as
well as the above proof requires that all components in the
weight vector are positive (i.e., non-zero). Intuitively, when a
component w'?) is zero, the scalarization method (including
our SL-ES) would ignore the i-th objective and only optimize
other objectives. Consequently, the computed solution may still
be improved w.r.t. the i-th objective without deteriorating any
other objective, and the solution is thus not guaranteed to be
Pareto-optimal.

C. Discussion on Completeness

In this paper, an algorithm is called a “complete” algorithm
if it can find the entire Pareto-optimal front. It remains an open
question whether SL-ES is complete (i.e., whether the entire
Pareto-optimal front can be obtained by varying the weight
vectors sampled from B). Let &,;; denote the set of ergodic
vectors corresponding to all feasible trajectories. To show that
SL-ES is complete, we need to show that &,;; is convex [17]E]
However, the Fourier coefficients of objective functions and
the dynamics of the robot under consideration offer additional
challenges in determining the convexity of £,;.

V. EXPERIMENTAL RESULTS
A. Baseline Methods and Implementation

MOGAs [14], [15]] are popular approaches to solve MOO
problems, which are also applicable to the MO-ES problem.
We use NSGA-II [[14]], a popular MOGA for MOO problems,
as the first baseline approachE] A second baseline approach
is a naive scalarization method, which differs from SL-ES as
it leverages neither the idea of sequential local optimization
nor adaptive weight sampling. It iteratively samples W € B,
and plans ergodic trajectory w.r.t. the scalarized info map by
optimizing from some common naive initial guess, such as a
zero control input.

We implement our algorithmsﬂ and the naive scalarization
method in Python, and use the NSGA-II implementation from
pymoo [30], a MOGA library, for our experiments. We run
tests on a laptop with an Intel Core i7 CPU and 16 GB RAM.
All tests have a workspace of size [0, 1] x [0, 1]. We specify
the robot dynamics as a differential-drive robot that initially
locates at the center of the workspace (0.5,0.5) with orienta-
tion zero (pointing to the right). Specifically, the robot state is
s = (pa, py, 0) and the dynamics is § = (v cos(f), vsin(f),w)
where (v,w) is the control input vector and represents linear
and angular velocities. In our test, the linear velocity is
required to be positive at all times.

For presentation purposes, we use “Scala.”” to denote the
naive scalarization method, “SL-ES” to denote our algorithm
with the basic neighbor sampling method (Sec. [[TI-D), and “A-
SL-ES” to denote our algorithm with the adaptive neighbor

2Specifically, we need to analyze the convexity of the set {a@ + b | Va €
Sa”,‘v’g >0, be RM}. We refer the reader to Chapter 3 of [17] for more
details.

3NSGA-II is popular for MOO problems with two or three objectives. When
there are more than three objectives (sometimes referred to as “many-objective
optimization”), NSGA-III can be used.

40ur code is available at https:/github.com/wonderren/public_moes
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Fig. 4. (a) shows the two info maps to be covered. (b) shows the hyper-

volume (H.V.) of the solution set computed by each method, where we allow
NSGA-II (baseline) to run for three times the run time (R.T., in seconds) of
SL-ES. (c) visualizes the ergodic vectors of the computed solutions. SL-ES
computes a set of solutions with similar or better quality than NSGA-II while
using only one third of the run time of NSGA-IIL

sampling method (Sec. [[TI-E)). We set a termination threshold
e = 1073 for each ErgodicSearch call in Alg. |1} when the
ergodic metric w.r.t. the scalarized info map is no larger than
€, ErgodicSearch terminates. To describe the quality of the
computed Pareto-optimal front, we use the “hyper-volume”
indicator (H.V.) [15]] from the MOO literature. Intuitively, H.V.
denotes the volume enclosed by the computed Pareto-optimal
front and a reference point in the objective space, which is set
to (1,1,---,1) for all tests.

B. Comparison with NSGA-I1

We begin our tests with m = 2, and the info maps are shown
in Fig. @(a). We compare SL-ES with NSGA-II. We measure
the run time of SL-ES (denoted as 7%) and let NSGA-II run
for three times the run time of SL-ES (i.e., 377). As shown in
Fig. [ increasing the “population size” (a hyper-parameter in
NSGA-II) can slightly improve the solution quality. However,
SL-ES computes a set of solutions with similar or better
quality (in terms of H.V.) than NSGA-II while using only
one third of the run time of NSGA-II. The possible reason
is, while being general to various problems, NSGA-II treats
the objective functions as a “black-box” and often ignores the
underlying structure of the problem (such as the dynamics of
the robot and the local metric structures).

C. Comparison with Naive Scalarization

We then compare SL-ES against the naive scalarization
method (Scala.) with the same test settings as in the previous
section. In Fig. [5] the horizontal axis indicates the number of
optimization iterations in the ErgodicSearch procedure while
the vertical axis denotes the ergodic metric in (5). Note that
at the beginning of each episode, a different w (and thus
a different ¢’) is considered, and thus the ergodic metric
changes. As shown in Fig. 5] Scala. takes the most number of
optimization iterations in each episode since it always starts
from the same naive initial guess (i.e., a zero control input).
Both SL-ES and A-SL-ES run faster than Scala. especially

when d decreases (which means there are more planning
episodes). Take Fig. [5|b) for example, SL-ES requires less
than half of the run time in comparison with Scala., and still
computes a solution set with the same quality in terms of H.V.
It shows that running local optimization by (i) sampling weight
vectors that are near to each other, and (ii) reusing the solution
from the previous episodes as the initial guess for the current
episode, can expedite the computation.

Fig.[5|also demonstrates the benefit of the proposed adaptive
neighbor sampling: specifying d in B is not intuitive and can
lead to either too sparse (d = 0.2) or too dense sampling
(d = 0.05), which leads to either a low H.V. value or a
large number of episodes. Sampling based on d’ in the affine
transformed weight space 13" allows the algorithm to adapt to
the differences between info maps. Additionally, d’ has the
same unit as the ergodic metric between info maps, and is
thus more intuitive to specify.

D. Different Sampling Step Sizes

This section tests A-SL-ES with varying step sizes d’, with
m = 2, and with the same info maps as in the previous section.
As shown in Fig. @ by tuning d’, there is a trade-off between
H.V. values, which indicate the quality of the solution set,
and the computational burden, which is indicated by the run
time. Having slightly larger d’ can speed up the computation
significantly with small decrease in H.V.

E. Various Info Maps

We further test the algorithms using various info maps as
shown in Fig. [7/| where each info map is a mixture of (two-
dimensional) Gaussian distributions with randomly sampled
expectations and covariance matrices. Among these methods,
Scala. and SL-ES are tested with d = 0.1, NSGA-II has a
fixed population size of 30, and A-SL-ES has d' = 0.05.
We observe from Fig. [/] that, our approach SL-ES computes
solutions with better hyper-volume than the NSGA-II baseline
within the same amount of runtime. Additionally, our SL-ES
and A-SL-ES compute solutions with similar quality as the
Scala. baseline, while running up to an order of magnitude
faster than Scala.

F. Three Objectives

We then test NSGA-II, SL-ES and A-SL-ES with m =
3. The info maps are shown in Fig. a). Note that ¢ is
similar to ¢(3) while they are both quite different from ¢(2).
Fig. [§(d) shows that A-SL-ES provides a subset of the Pareto-
optimal front of similar quality in comparison with the results
computed by SL-ES (in terms of H.V.) while having a much
smaller run time. From Fig. [§(b) and [§[c), it is obvious that
A-SL-ES can adaptively sample weight vectors based on the
difference between each pair of info maps: there are only a
few blue points in Fig. [§[c) to represent the Pareto-optimal
front. In contrast, SL-ES has a lot of samples (the red points
in Fig. [8(b)) to represent the Pareto-optimal front.

We note that the current implementation of the algorithm
can take relatively long runtime to compute a set of Pareto-
optimal solutions (e.g. Fig. [§[d)), which is caused by (i) the
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Fig. 5. The horizontal axis indicates the number of optimization iterations in the ErgodicSearch procedure while the vertical axis denotes the ergodic
metric in . Note that at the beginning of each episode, a different w (and thus a different ¢’) is considered, and thus the ergodic metric “jumps”. The
corresponding tables in (a), (b) and (c) show the hyper-volumes of different methods with different step sizes. This figure shows that SL-ES requires obviously
less computational time than Scala. (i.e., baseline) to compute a set of solutions with similar quality in terms of H.V. More discussion can be found in the

text.
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Fig. 6. Hyper-volume (H.V.) and run time (R.T.) (in seconds) of A-SL-ES
with varying sampling step size d’. This figure shows, by tuning d’, A-SL-ES
can trade-off between solution quality and run time. Having slightly larger d’
can speed up the computation with small decrease in the H.V.

difficulty of the MO-ES problem, and (ii) the implementation
issue. Specifically, first, solving a multi-objective optimization
problem is in general computationally expensive since a set
of Pareto-optimal solutions (rather than a single solution)
are desired. Second, our implementation is not optimized for
running speed. We point out possible techniques that can
expedite the computation in Sec.

G. Robot Simulation

We apply the proposed A-SL-ES algorithm to an example
MO-ES problem and simulate the computed trajectory in

ROSE| The example involves a warehouse with hazardous gas
leakage. The goal is to find both sources of leakage and search
for survivors. The two objectives are described using two info
maps, which can be generated based on the prior knowledge of
the warehouse (Fig.[9). Usually these two objectives cannot be
optimized simultaneously as survivors can be far away from
the gas leakage source. We use A-SL-ES to compute a set of
Pareto-optimal trajectories, which can then be visualized to the
decision maker on site so that a more informed decision can
be made. For example, if the effect of the gas for humans is
minor but it affects the goods in the warehouse significantly,
one might want to choose a trajectory that prioritizes finding
the leakage source more than searching for humans inside.

Fig. Pfb) visualizes three Pareto-optimal solutions. For
instance, the green trajectory prioritizes finding survivors (the
pink info map) while the red one favors localizing leakage
sources (the yellow info map). Please refer to our multi-media
attachment for more details.

H. Test with Two Physical Robots

To verify that the planned trajectories can be executed on
physical robots, we run tests with two ROSBots (Fig. [I0[c)),
a different-drive wheeled robot with the ROS navigation
stack installedﬂ ROSBot is equipped with a 2D Lidar for
localization, and we first build a 2D occupancy grid map
by manually commanding a ROSBot to move around the

S0ur ROS implementation leverages |https:/github.com/wh200720041/
warehouse_simulation_toolkit and |https://github.com/bostoncleek/ergodic_
exploration.

®https://husarion.com/manuals/rosbot/
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Fig. 7. Comparison of methods with various info maps. Figure (a,b,c,d)

show the approximated Pareto-optimal front computed by various methods.
Among them, the runtime of Scala. and SL-ES are recorded and denoted
as R.T. Scala. and R.T. SL-ES respectively. NSGA-II is then given a runtime
budget of R.T. Scala. (green stars) and R.T. SL-ES (yellow stars) respectively.
The table shows both the hyper-volume (H.V.) and the runtime (R.T.) ratios.
Our methods (SL-ES and A-SL-ES) compute better quality solution than the
NSGA-II baseline, while running up to an order of magnitude faster than the
Scala. baseline.

workspace and then copy the map to both the robots for
localization. As shown in Fig. @ka), we consider two info
maps and run SL-ES to cover them. We then randomly pick
a solution, which corresponds to the weight vector (0.8,0.2),
for execution. To execute the planned trajectories using the
ROS navigation stack available on ROSBot, we down-sample
the trajectory and send the resulting waypoints to ROSBot to
follow, rather than sending velocity or acceleration commands
to the robots. As a result, the robot may slow down as they
are close to a waypoint before moving to the next waypoint.
Please refer to our multi-media attachment for a visualization.

VI. CONCLUSION AND FUTURE WORK

This paper formulates a Multi-Objective Ergodic Search
(MO-ES) problem, which requires planning trajectories to
simultaneously cover multiple info maps. To solve the MO-ES
problem, we propose a framework called Sequential Local
Ergodic Search (SL-ES). SL-ES scalarizes info maps rather
than the objective functions using a weight vector, which
allows us to leverage the existing various (single-objective)
ergodic search algorithms to plan the trajectory. To obtain
weight vectors, SL-ES explores the weight space (the space
that contains all possible weight vectors) in a breadth-first
manner and leverages the idea of local optimization by (i) sam-
pling new weight vectors in the neighborhood of the current
weight vector, and (ii) optimize the trajectory corresponding

gb(l)(x-axis) ¢)(2) (y-axis) ¢(3)(Z-axis)
(@)
I
NSGA-II o
N ® SLES
‘e, ® A-SLES

(b)
Method HV. [RT.
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A-SLES (d'=0.05) |0.79 |161
NSGA-II (#pop=80) 0.74 (432

Fig. 8. (a) shows the three info maps to be covered. (b) highlights the
solution (red) computed by SL-ES and (c) highlights the solution (blue)
computed by A-SL-ES. (d) shows the hyper-volume and run time (in seconds)
of each method. (e) shows a scalarized info map and the corresponding ergodic
trajectory. A-SL-ES computes solutions of similar quality while requiring less
than half of the run time in comparison with SL-ES and NSGA-II.

Fig. 9. (a) shows the warehouse environment and (b) shows the information
maps visualized as the yellow (probable gas leakage locations) and pink
(probably survivor locations) markers on RViz. The current method does not
consider obstacle avoidance during the ergodic planning and our simulation
relies on an additional local planner to avoid obstacles.

to the new weight vector by using the current solution as
the initial guess. Additionally, to further expedite SL-ES, we
also develop a variant called Adaptive SL-ES (A-SL-ES) that
can adjust the density of sampled weight vectors based on
a similarity metric between each pair of info maps to be
covered in the Fourier coefficient space. We prove that the
solutions computed by SL-ES and A-SL-ES are guaranteed to
be Pareto-optimal. The numerical results verify the advantages
of SL-ES and A-SL-ES over the baselines. The simulation and
the physical robot tests verify that the planned results can be
executed on real robots.
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Fig. 10. (a) shows the two info maps to be covered. (b) shows the scalarized
info map and the planned trajectories for both agents. (c) shows the two
ROSBot used in the test. (d) shows the test site and visualize the trajectories
to be followed by both robots, where the stars mark the ending positions of
the robots.

Future Work. This paper is a first attempt to investigate
MO-ES problems, and considers multiple static info maps
without obstacles. It is worthwhile to investigate variants of the
MO-ES problem where the info maps are dynamic (i.e., maps
are updated in an online manner during the robot motion) or
the workspace is cluttered with static and dynamic obstacles.
Additionally, one can also consider heterogeneous multi-agent
systems where each agent has diverse capability to search the
info maps. Finally, to expedite the computation, one can con-
sider using C++ rather than Python for implementation, and
leveraging real-time ergodic search techniques [23]], especially
for time critical tasks such as search and rescue.
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