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Abstract—Fictitious play is a popular learning algorithm in
which players that utilize the history of actions played by the
players and the knowledge of their own payoff matrix can
converge to the Nash equilibrium under certain conditions on
the game. We consider the presence of an intelligent player that
has access to the entire payoff matrix for the game. We show that
by not conforming to fictitious play, such a player can achieve a
better payoff than the one at the Nash Equilibrium. This result
can be viewed both as a fragility of the fictitious play algorithm
to a strategic intelligent player and an indication that players
should not throw away additional information they may have, as
suggested by classical fictitious play.

I. INTRODUCTION

Learning algorithms (see, e.g., [1]–[3]) can be viewed as a
mechanism for the agents to discover their solution strategies
under a solution concept such as a Nash equilibrium. In
this paper, we specifically focus on fictitious play [4] as the
learning algorithm used by players. In fictitious play, each
player builds a model of what the strategy of the other players
is based on the historical actions taken by them and plays a
best response to it. Analyzing the class of games for which
fictitious play and its variants converge to a Nash equilibrium
continues to be a direction of active research.

Two features of this algorithm are worth pointing out.
First, almost all convergence results for the fictitious play
algorithm assume that all players are following this algorithm.
For a setting of games among strategic players, this seems a
strong assumption requiring some form of cooperation among
otherwise non-cooperative players. For example, in a two-
player game, a strategic player can force her opponent into a
Stackelberg equilibrium with herself as the leader (and gain in
payoff) by deviating from the trajectory suggested by fictitious
play. The first question of interest to us is to identify the opti-
mal payoff that a strategic player can achieve by exploiting the
fact that all the other players follow fictitious play. We show
that a payoff higher than the one in Stackelberg equilibrium
is indeed achievable. The second feature of fictitious play is
that the players do not use any further information about the
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game other than their own utility payoffs for various strategy
combinations. This is desirable in that players that possess
limited and distributed information about the game can still
discover the solution. However, it does raise the question if
a player with more knowledge can obtain a better payoff for
herself (or other players) than the one at Nash equilibrium.
Once again, we show that a player that knows the entire payoff
matrix for all the players can indeed improve its own payoff
and in some settings, the payoffs of all players by using that
information.

We also note that the convergence results on the classes
of games for which fictitious play is known to converge is
much larger when only two players are involved. When more
than two players are present, it has been shown that the Nash
equilibrium need not possess an absorption property (where
a strategy profile leaves no incentive for a player to switch
its action in future time instants) that is useful to guarantee
convergence [5]. Thus, the results for convergence of standard
fictitious play algorithm in an n player game are weaker. As a
side contribution, we define a notion of non-degeneracy in n
player finite games and show that the presence of an ordinal
potential function assures the convergence of fictitious play to
the respective Nash equilibrium in such games.

We consider the interaction between n+1 players that play
a matrix stage game repeatedly. For two player games, we
do not assume any particular structure on the game, while
for N player games, we restrict our attention to a class of
games defined in Definition 2. The players are classified based
on available information. The first class consists of a single
intelligent player (IP) who is aware of the complete game.
All the remaining players, referred to as opponents, belong to
the second class and are limited to the knowledge of their own
payoffs for different strategy vectors. When all players employ
FP, under suitable conditions, the players converge to the Nash
equilibrium. However, the IP need not adhere to Fictitious
Play. We ask the question: Can the IP obtain a higher than
Nash equilibrium payoff by deviating from fictitious play?
Further, if there exists such a strategy profile, how does the
IP enforce it when the opponents are implementing fictitious
play? Our key contributions are as follows.

1) We identify strategies that can deliver an expected payoff
greater than the Nash and the Stackelberg equilibrium
payoff for the IP. For the case when there are 2 players
in the game, the strategies that we identify are optimal
for the IP. For the general case of n + 1 players, we
provide a more tractable class of strategies that may be
sub-optimal, yet can provide an expected payoff greater
than the Nash and the Stackelberg payoff for the IP.
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2) We provide a linear programming formulation that de-
termines the strategy identified above.

3) We determine a pure action trajectory for the IP that
reaches the desired mixed strategy probabilities while
keeping the opponents in their FP determined strategies.

Ever since its introduction [4], fictitious play (FP) has
been a popular learning algorithm in game theory [6], [7].
The class of games for which the algorithm converges to
Nash equilibrium has been gradually expanded (see, e.g.,
[8]–[11]), although it is known that the convergence does
not hold in general [12]. We focus on the variant known
as alternating fictitious play that was actually the algorithm
originally proposed by Brown [4], [13]. For two player games,
this algorithm converges to the pure Nash equilibrium if the
game belongs to a special class, namely that of non-degenerate
ordinal potential games. For games with n players, in [14],
a lack of absorption property for standard FP was illustrated
even if the game belongs to such a special class. As part of our
proofs, we show that this absorption property can be revived
by imposing an additional constraint.

However, almost all the existing convergence proofs in
the literature assume that all players update their strategies
according to FP. The payoffs that a strategic player may be
able to derive by deviating from the algorithm (even as the
other players continue to play FP) is largely unexplored. In
our formulation, the IP is assumed to possess the knowledge
of the payoff matrices of all the players, while the other players
know (or use) only their own payoffs for various strategy
combinations in keeping with FP. Players having access to
dissimilar information about the game is, of course, widely
studied (e.g., as games of incomplete information, in the form
of incredible threats in dynamic games, or through models of
bounded rationality [15]). However, less work has considered
it in the context of learning in games. One relevant field
that has studied one rational patient player playing against
a boundedly rational opponent that employs myopic best
response is Market Dominance and the Chain-Store Game [16]
where it is known that encouraging a reputation for the rational
player can deliver a higher payoff over time.

If the strategic player announces her commitment to a
Stackelberg strategy where she is the leader, she can obtain
the corresponding payoff both in reputation based setups
and if the opponent is implementing fictitious play. Along
this theme, [17] identifies the conditions under which the
results from sequential game play extend to its simultaneous
counterpart. These results are improved in [18] that further
accounts for the possibility that distinct strategies on the long-
run player could be observationally equivalent. [19] concludes
that if public commitments are allowed, then the best that
a long-run strategic player could do is to publicly commit
to a pure Stackelberg strategy while the opponents take the
role of Stackelberg followers. [20] extends the discussion to
contract games while [21] shows that the Stackelberg strategy
that the strategic player announces to the opponents may be
mixed. In contrast to this stream of work, we do not allow
communication among the players, so that the IP can no longer
commit to or announce her strategy publicly. In this case, we
show that higher payoffs than the Stackelberg solution are

possible for the IP. The fact that the intelligent player does
not communicate to the other players or change their utility
functions also makes our work different from incentive design,
nudging, and information design in games [22]–[24].

II. PROBLEM DESCRIPTION

Consider a finite game G = (n + 1, Yi, Ui) with n + 1
players, where each player Pi ∈ P := {P0,P1, · · · ,Pn} has
an action set Yi and a utility function Ui : Y → R where
Y := Y0×Y1×· · ·×Yn. Further, for a given action profile y =
(y0, y1, · · · , yn) ∈ Y , let y−i := (y0, · · · , yi−1, yi+1, · · · , yn)
denote a profile of player actions other than player Pi, With a
slight abuse of notation, a profile y of actions can be written as
(yi, y−i) and the corresponding utilities Ui(y) as Ui(yi, y−i).
We assume that the game G is played at times t = 1, 2, 3, · · · .
A mixed strategy z̃i is a vector of probabilities for all actions
in the set Yi. Denote by z̃−i the profile of mixed strategies
for all players other than Pi and the expected utility for Pi

playing a pure action yi and the rest of the players playing
z̃−i by Ui(yi, z̃−i). When a game is played repeatedly, the
mixed strategy vector of player Pi can change with time
and we denote the vector at time t by z̃i(t). The players
are categorized based on their information structure within
the repeated game. In the first category, players are aware of
only their own payoffs and the actions of all the players as
realized in all stage games till that time. We refer to them
as the opponents and denote them using Pj . Without loss of
generality, we assume that Pj ∈ P ′ := {P1,P2, · · · ,Pn}. We
assume that the opponents adhere to Alternating Fictitious Play
(see Definition 1 below), that offers convergence guarantees
in spite of the limited information availability at the players.
Player P0 falls in the second category by dint of her knowledge
of the entire game G which includes the payoff matrix for all
the players, as well as her knowledge of her own payoff and
actions of all the players as realized in all stage games till
that time. We consider P0 to be the Intelligent Player and
refer to it as the IP. The IP may deviate from FP to obtain
a higher payoff. Every stage game is played as follows. At
every stage t, the IP begins with its action, say y0 ∈ Y0. The
best response of all the remaining players then follows in the
order of their indices, as specified in Definition 1. Once all
players have played at stage t, the payoff for all the players is
realized after identifying the actions played by all the players
at time t. The game then moves on to stage t+ 1.

Definition 1. For a game G = (n + 1, Yi, Ui), an opponent
Pj ∈ P ′ adheres to Alternating Fictitious Play (referred as
FP in this paper) if at every stage game at time t, Pj plays its
best response (BRi(·) to the empirical distribution of actions
of players {P0,P1, · · · ,Pj−1} until time t and that of players
{Pj+1, · · · ,Pn} until time (t− 1) as given by

BRi(ˆ̃z−i(t)) := argmax
yi∈Yi

Ui(yi, ˆ̃z−i(t)), (1)

where ˆ̃z−i(t) = {ˆ̃z0(t), · · · , ˆ̃zi−1(t), ˆ̃zi+1(t − 1), · · · , ˆ̃zn(t −
1)} is the estimate of the mixed strategy profile of all the
other players as calculated using the empirical frequency of
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the actions played by players {P0,P1, · · · ,Pj−1} until time
t and players {Pj+1, · · · ,Pn} until time (t− 1). �

Note that how the IP should choose its strategy has not
been specified. If she chooses FP as well, for many classes of
games G, the players will converge to the Nash equilibrium
strategies. However, the IP can potentially obtain a better
payoff by deviating from FP. The problem we are interested
in is to identify the optimal strategy for the IP to obtain the
best payoff when the opponents continue to play FP. It is not
clear a priori, whether the optimal strategy for the IP will be a
mixed or a pure strategy, and whether the game will converge
to an equilibrium or not when the IP deviates from FP. If the
optimal strategy for the IP is a mixed strategy, then it is not
sufficient to characterize merely the probabilities of various
actions being taken, since there may exist multiple strategy
trajectories that obey these probabilities but do not deliver the
expected payoff. Thus, we are also interested in identifying
an action sequence for the IP that realizes the desired strategy
profile for all the players when the opponents play FP.

III. TWO PLAYER GAMES

The analysis of convergence of FP is much simpler and
more advanced in 2 player games. We begin with that special
case as well and show that an optimal strategy for the IP can be
calculated using a linear program without the need to assume
any additional structure on the game G.

Let the action set Y0 of the IP be the set Y0 =
{y10 , y20 , · · · , yn0 } and the set Y1 for the opponent be the set
Y1 = {y11 , y21 , · · · , ym1 }. We can then denote the payoffs of the
IP (resp. the opponent) through an n×m matrix A (resp. B)
such that the (i, j)-th element aij of A (resp. bij of B) denotes
the payoff of the IP (resp. the opponent) when the IP chooses
action yi0 and the opponent chooses action yj1. Consequently,
the best response for the IP corresponding to the opponent
playing a mixed strategy z̃1 is given by argmaxi(Az̃1)i and
the best response for the opponent corresponding to the IP
playing a mixed strategy z̃0 is given by argmaxj(Bz̃0)j

FP by both players in a 2-player game is known to converge
to a Nash equilibrium in some specific games, for instance in
2×M games with generic payoffs. We emphasize that we do
not impose such restrictions on the payoffs of the players.
However, we assume that the payoffs of the opponent are
indexed such that a lower index indicates a higher payoff for
the IP, and to break ties in FP, the opponent employs a lower
index when indifferent between two or more pure actions. Our
first result notes that the optimal strategy for the IP restricts
the opponent to play a pure strategy in the steady state.

Theorem 1. The optimal strategy for the IP is such that the
opponent plays a single action in the steady state.

Proof. At every time instant, the opponent employing FP
has a unique pure strategy best response for any trajectory
history of the IP. Thus, any switching between opponent’s
pure strategies that deliver unequal payoffs to the IP would
reduce the expected payoff. To maximize its expected payoff,
the IP thus restricts the opponent to the pure strategy that
delivers her highest payoff.

We can then characterize the optimal strategy of the IP.

Theorem 2. Let z̃
(j)
0 be a (possibly mixed) strategy for the

IP such that the corresponding best response for the opponent
is the pure strategy yj1 where j ∈ {1, 2, · · · ,m}. The strategy
profile (z̃?0, y

j?

1 ) that maximizes the expected payoff of the IP
is given by

j? = argmax
j

(
max
z̃
(j)
0

(z̃
(j)
0 ·Ay

j
1)

)
∀j ∈ {1, 2, · · · ,m}

z̃?0 = max
z̃
(j?)
0

(z̃
(j?)
0 ·Ayj

?

1 ).

(2)

Proof. By Theorem 1, the IP can restrict her search over
strategies that lead to best responses for the opponent that are
pure strategies in the steady state. In other words, the only
strategies of interest are the non-dominated pure strategies
of the opponent. Now for every such strategy yj1, there
exist (possibly multiple) mixed strategies z̃

(j)
0 such that the

opponent’s best response to the mixed strategy via Fictitious
play is yj1 and the corresponding payoff for the IP is given
by z̃

(j)
0 · Ayj1. The highest payoff for the IP can then be

computed by maximizing this payoff over the mixed strategy
space, followed by identifying the pure action of the opponent
with the highest such payoff, as given by (2).

Remark 1. Theorem 2 can be restated as m Linear Pro-
gramming problems with constraints arising from restricting
the response of the opponent to one of the pure actions while
the maximization comes from the expected payoff of the IP. �

2 (Opponent)

L B R

1 (IP)
U (6,10) (10,7) (8,2)

D (5,1) (15,8) (7,9)

TABLE I
A FINITE TWO PLAYER GAME CONSIDERED IN EXAMPLE 1

Example 1. A finite two player game with two pure actions
for the IP (the row player) and three pure actions for the
opponent (the column player) is presented via Table I, where
the best responses for each player are marked in bold. When
both players employ FP, the game converges to the pure Nash
equilibrium (U,L), where the IP obtains an expected payoff of
6. To turn the game into a Stackelberg game, the IP can play
D repeatedly and shift the game to (D,R), thus obtaining
a payoff of 7. Theorem 2 increases this payoff further by
posing three Linear programming problems corresponding to
the three pure actions of the opponent. It turns out that a
mixed strategy of ( 1

6 ,
5
6 )T restricts the opponent to the pure

action B and delivers an expected payoff of 14.17, greater
than prior solutions and is also the highest possible payoff.
The conditions from Linear Programming problem require the
IP to maintain the probabilities of its pure action U in the
range [ 16 ,

7
10 ], in order to restrict the opponent to B. A strategy

trajectory that achieves this is (U,D,D,D,D,D). �
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IV. GAMES WITH MORE THAN TWO PLAYERS

While the above analysis can be generalized to games
with more than two players, the solution quickly becomes
computationally complicated. Further, analysis of convergence
of FP in games with more than two players is more limited
than in those with two players even if no IP is present. We now
make some assumptions on the game structure and present a
suboptimal but computationally more tractable solution.

a) Assumptions on the Game: Define a subgame G(y0)

that restricts the IP to one of its pure actions y0 as follows
(note that the subscript i is reserved for all players in game
G while j is reserved for opponents in subgame G(y0) i.e.,
Pi ∈ P and Pj ∈ P ′): G(y0) = (n, Yj , U

(y0)
j ) where U (y0)

j =
Uj(y0, yj , y−j) such that j ∈ {1, · · · , n}, yj ∈ Yj , y−j ∈
×s6={0,j}Ys. We assume that the game G is a non-degenerate
ordinal potential game with respect to the IP as defined
below. Recall that G is an ordinal potential game if there
is a function Φ : Y → R such that ∀i, ∀y−i ∈ Y−i,
∀y′i, y′′i ∈ Yi, we have Ui(y

′
i, y−i) − Ui(y

′′
i , y−i) > 0 ⇐⇒

Φi(y
′
i, y−i)− Φi(y

′′
i , y−i) > 0.

Definition 2. A game G = (n+ 1, Yi, Ui) is considered to be
degenerate with respect to the IP, if for some y0 ∈ Y0, there
exists y−0, y′−0 ∈ ×Yj such that Uj(y0, y−0) = Uj(y0, y

′
−0),

if y−0 6= y′−0. Otherwise, the game is said to be non-
degenerate with respect to the IP. Further, it is an ordinal
potential game with respect to the IP if every subgame
G(y0) = (n, Yj , U

(y0)
j ), y0 ∈ Y0, is an ordinal potential game

with a unique pure Nash equilibrium. �

Note that we restrict our discussion to non-degenerate and
ordinal potential games where the constraints are applicable
only to the subgames G(y0) and not to G itself. Consequently,
the discussion below relates to a larger class of games. We first
show a convergence result for FP in this larger class of games.

Theorem 3. In every subgame G(y0) of a finite non-
degenerate ordinal potential game G with respect to the IP,
FP by the opponents converges to a pure Nash equilibrium of
the game in a finite number of time steps.

Proof. In a subgame with finite strategy profiles, there cannot
be an infinite sequence of improvement steps without resorting
to cycles. Since such cycles are absent in ordinal potential
subgames, any improvement path converges to a strategy
profile. In a non-degenerate subgame, such a strategy profile
does not have any improvement steps leading out of it, making
it the pure Nash equilibrium. As a result, all improvement
paths converge to a pure Nash equilibrium in finite time.

b) Determination of the best convergence based mixed
strategy for the IP: In order to determine a strategy that
increases IP’s payoff, one possibility is to consider the payoffs
in the subgames G(y0) corresponding to all its pure actions
and select the one that yields the best payoff. However, the
IP can in fact do better by switching between this action and
others in a manner that increases her payoff, without allowing
the opponents to switch from the pure Nash equilibrium of
the subgame. We may term such a strategy for the IP as
a convergence based mixed strategy, which is a mixed

strategy specific to a pure action y0, such that the IP switches
between its pure actions while restricting the opponents to the
pure Nash equilibrium of the subgame G(y0). By assumption,
the opponents switch from one action to another only if the
expected payoff for the former is strictly lower than the latter.

Let z0 denote IP’s convergence based mixed strategy such
that the best response for all the opponents is (y0, y

?
j , y

?
−j)

in the subgame G(y0). Let zk0 denote the probability corre-
sponding to a pure action k ∈ Y0. The expected payoff for
any player Pi ∈ P is given by

U
(y0)
i (z0, y

?
j , y

?
−j) =

∑
k∈Y0

zk0 Ui(k, y
?
j , y

?
−j). (3)

The following result determines the subgame G(y?
0 ) and its

corresponding convergence based mixed strategy z?0.

Theorem 4. Let (y0, y
?
j , y

?
−j) be the strategy profile corre-

sponding to the pure Nash equilibrium for the subgame G(y0),
where y0 ∈ Y0 and j ∈ {1, 2, · · · , n}. Let U (y0)

0 (z0, y
?
j , y

?
−j)

be the expected payoff for IP for its mixed strategy z0 such that
the other players are restricted to the pure Nash equilibrium
of the subgame G(y0), as given by (3). The strategy profile
(z?0, y

?
j , y

?
−j) that maximizes the expected payoff of the IP is

y?0 = argmax
y0

(max
z0

U
(y0)
0 (z0, y

?
j , y

?
−j))

z?0 = argmax
z0

U
(y?

0 )
0 (z0, y

?
j , y

?
−j).

(4)

Proof. From Theorem 3, it is adequate to consider the Nash
equilibria of the opponents in lieu of the remaining strategy
profiles since FP always converges to the pure Nash equilibria
in the class of games we consider. For every subgame G(y0)

and the corresponding pure Nash equilibrium (y0, y
?
j , y

?
−j),

there exists a mixed strategy profile z0 for the IP whose best
response for all the opponents is still the Nash equilibrium
profile (y0, y

?
j , y

?
−j). Thus, the maximum expected payoff for

the IP can be computed by first maximizing such payoff
U

(y0)
0 (z0, y

?
j , y

?
−j), within a subgame G(y0) followed by iden-

tifying the subgame G(y?
0 ) with the highest maximum expected

payoff, as given by (4). The corresponding convergence based
mixed strategy z?0 can be obtained by using the subgame G(y?

0 )

and maximizing the expectation from (3).

We now present a result that indicates a procedure to
compute z?0 via a linear program (LP).

Corollary 1. The computation of each z0 via Theorem 4 for a
pure action y0 of the IP can be solved using an LP. z?0 can be
calculated by solving a number of such problems equal to the
cardinality of the set Y0 and then by choosing the subgame
with the highest maximum expected payoff.

Proof. The proof follows from the structure of (4) where z0 is
obtained by maximizing the cost function U (y0)

0 (z0, y
?
j , y

?
−j).

For brevity, denote z0 by a vector q = (q1, q2, · · · , q|Y0|)
T

where |Y0| is cardinality of the set Y0. Let the strategy profile
(k, y?j , y

?
−j) be the Nash equilibrium for opponents in the
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subgame G(k). Then, the Linear Programming problem for
a pure action k ∈ Y0 can be stated as

max
q

∑
k∈Y0

qk U0(k, y?j , y
?
−j)

s.t.
∑
k∈Y0

qk [Uj(k, y
′
j , y

?
−j)− Uj(k, y

?
j , y

?
−j)] ≤ 0

∀ y′j ∈ Yj , y′j 6= y?j and ∀ j ∈ {1, 2, · · · , n}∑
k∈Y0

qk = 1, qk ∈ [0, 1].

(5)

Various constraints for the Linear Programming problem arise
from restricting the opponents’ best responses to the pure Nash
equilibrium of the subgame G(y0). The additional maximiza-
tion in (4) then leads to the identification of the subgame G(y?

0 )

that delivers the maximum expected payoff.

Example 2. A finite non-degenerate ordinal potential three
player game with respect to the IP (P0) is presented via Table
II. Each player has three strategies and each matrix represents
the game with respect to one of the strategies of the IP. The
row player is P1 while the column player is P2.

P2

L N R

P1

U (2,1,1) 1 (3,6,3) 9 (6,8,2) 5

M (3,2,7) 2 (4,4,8) 3 (3,7,9) 4

D (3,3,5) 7 (2,5,6) 8 (4,9,4) 6

P0 ⇔ IP (y0 = A)

L N R

P1

U (2,4,2) 3 (4,3,3) 4 (7,6,9) 5

M (4,2,4) 2 (3,1,1) 1 (3,8,5) 6

D (3,7,8) 9 (2,5,7) 8 (4,9,6) 7

P0 ⇔ IP (y0 = B)

L N R

P1

U (2,1,1) 1 (5,9,2) 8 (5,6,3) 9

M (4,2,7) 2 (3,8,9) 7 (4,5,8) 6

D (3,3,4) 3 (2,7,5) 4 (3,4,6) 5

P0 ⇔ IP (y0 = C)
TABLE II

A FINITE THREE PLAYER GAME G WITH THREE SUBGAMES

In this example, there are three subgames G(A), G(B) and
G(C). Best responses of each opponent against pure actions
of the remaining players, as given by (1) are marked in bold.
Table II also presents the potentials (marked in green) of
various strategy profiles within their respective subgames [10].
Naturally, the profile with the highest potential is the unique
pure Nash equilibrium within that subgame. Each cell depicts
the playoffs for the three players for that strategy profile.
When all the players (including the IP) employ FP, the game
converges to (B,D,L) and the IP obtains an expected payoff
of 3 (= U?

0 (y)). To increase its payoff, the IP utilizes Corollary
1 to formulate three LPs followed by identifying the pure
action y?0 whose convergence based mixed strategy z?0 delivers
the required payoff. This y?0 turns out to be C and z?0 turns
out to be ( 1

9 ,
3
9 ,

5
9 )T. Define the vector q = (q1, q2, q3)T as

the probabilities of pure actions (A,B,C) respectively. Then,
the corresponding LP is given as

max
q

6q1 + 7q2 + 5q3 (6a)

s.t. − q1 + 2q2 − q3 ≤ 0 (6b)
q1 + 3q2 − 2q3 ≤ 0 (6c)
− q1 − 7q2 − 2q3 ≤ 0 (6d)

q1 − 6q2 − q3 ≤ 0 (6e)
q1 + q2 + q3 = 1 (6f)
q1, q2, q3 ∈ [0, 1]. (6g)

The constraints in (6b−6e) restrict the opponents to (U,R)
while (6a) maximizes the expected payoff for the IP. The IP
obtains a payoff of 5.78(= 52

9 ) with this particular strategy,
which is greater than U?

0 (y) = 3. �

Convergence based mixed strategies are optimal in a class
of strategies as stated below.

Corollary 2. When the IP is restricted to playing a single
pure action repeatedly, (4) in Theorem 4 delivers the highest
payoff for the IP.

Proof. Since every opponent adheres to FP, the game con-
verges to the pure Nash Equilibrium of G(y0) in finite steps,
when IP plays y0 repeatedly. Thus, the opponents have no
incentive to deviate from (y0, y

?
j , y

?
−j) later. In a finite game,

restricting convergence based mixed strategy to probabilities
of pure action such that zk0 = 1 when k = y0 and zk0 = 0
otherwise and maximizing the payoffs using (4) delivers the
subgame with the highest Nash equilibrium payoff.

For instance, in Example 2, three pure actions of the IP lead
to three different pure Nash equilibria (A,U,N), (B,D,L)
and (C,U,R) when the IP is restricted to playing a pure action
repeatedly. Since the expected payoffs are equivalent to the
Nash equilibrium payoffs 3, 3 and 5 respectively, it is possible
to identify C as the pure action for the IP that delivers the
highest payoff under such restriction, as given by Corollary 2.

c) Computation of the strategy trajectory for the IP:
There exist multiple strategy trajectories that obey the proba-
bilities in z?0 and yet are incapable of delivering the expected
payoff promised by Theorem 4. We present below an algorithm
to compute a strategy trajectory X that delivers this payoff.

To this end, we divide the infinite trajectory into two
parts, the first being a static finite sequence played only once
followed by another finite sequence that is played repeatedly
and indefinitely. We denote the two sequences as X′ and X?

of length τ ′ and τ? respectively such that X′ is played once
followed by repeated play of X?. It is worth noting that the
IP’s expected payoff converges to the payoff obtained during
the sequence X?. We begin with a result that identifies the
entries in X′.

Lemma 1. For the subgame G(y?
0 ) computed via Theorem 4,

the sequence X begins with the repetition of the pure action
y?0 . As a result, y?0 is contained in the tuple X′.

Proof. In order to maximize IP’s expected payoff as per
Theorem 4 and Corollary 1, it is desirable to restrict the oppo-
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nents to the pure Nash equilibrium (y?0 , y
?
j , y

?
−j). Theorem 3

indicates that in FP, the strategies of opponents converge to this
equilibrium in finite time steps, within the subgame G(y?

0 ). As
a result, IP’s pure action is restricted to y?0 until the opponents
converge to (y?0 , y

?
j , y

?
−j), indicating that y?0 ∈ X′.

It has been established via the proof to Lemma 1 that
repeated play of y?0 alone is adequate in converging all the
opponents to the Nash equilibrium of G(y?

0 ). Consequently, the
sequence X′ is merely a repetition of y?0 for τ ′ time instants.
In the first time instant, it is assumed that the opponents play
a random pure action since FP needs at least one iteration
to compute a best response. The value for τ ′ takes into
account the number of maximum time instants required by
the opponents to converge at (y?0 , y

?
j , y

?
−j). Further, FP of the

opponents allows us to examine the expected payoffs of a
single opponent while everyone else continues to adhere to
their respective equilibria.

We note that the support of z?0 is the set of pure actions of
the IP with non-zero probabilities and denote it by Y ?

0 where
Y ?
0 ⊆ Y0. If we collect the constraints in (5) in an equation

of the form A · q ≤ 0, the following result characterizes the
relation between elements of A.

Lemma 2. In the subgame G(y?
0 ), increasing the probabilities

associated with pure actions other than y?0 increases the
incentive for the opponents to deviate from (y?0 , y

?
j , y

?
−j).

On the other hand, the probability for y?0 itself is inversely
proportional to their incentive to deviate.

Proof. The proof follows from the structure of the game G
where a strategy profile (y′0, y

?
j , y

?
−j), y

′
0 ∈ Y ?

0 , y
′
0 6= y?0 is not

necessarily a Nash equilibrium, making other strategy profiles
in the subgame G(y′

0) more attractive for the opponents.
Mathematically, it follows from (5) that an element Ajk is
given by (Uj(k, y

′
j , y

?
−j) − Uj(k, y

?
j , y

?
−j)). This expression

is always negative for pure action k = y?0 while it can have
positive entries for all other actions. Since the constraints are
of the form A·q ≤ 0, all positive entries increase the incentive
for opponents to deviate from (y?0 , y

?
j , y

?
−j) while the negative

entries work in the opposite manner, proving Lemma 2.

Once the players converge to (y?0 , y
?
j , y

?
−j), Theorem 4 and

Corollary 1 advocate the existence of a sequence X? with the
probability distribution given by z?0 that restricts the opponents
to (y?0 , y

?
j , y

?
−j), even when the IP switches to actions other

than y?0 . It has already been shown, via Lemma 2, that pure
actions other than y?0 increase the incentive for opponents to
deviate from (y?0 , y

?
j , y

?
−j). However, for any given opponent

Pj , the switch to a different action occurs only when the
expected payoff from Uj(k, y

?
j , y

?
−j) is strictly lesser than that

from another pure action of Pj i.e., Uj(k, y
′
j , y

?
−j).

Prior to determining X, it is worth noting that any arbitrary
sequence of actions in X? with probabilities given by z?0 need
not deliver the desired payoff for the IP. Consider, for instance,
a sequence X? = (A,B,B,B,C,C,C,C,C) in Example
2 with probabilities ( 1

9 ,
3
9 ,

5
9 )T, derived via Theorem 4 and

Corollary 1. Further, let X′ = (C,C,C) to ensure convergence
to the Nash equilibrium (C,U,R). When X′ is played first,
followed by a repeated play of X?, IP gets an expected payoff

of 3.67 as τ →∞, as opposed to the desired 5.78. We address
this by commenting on the size of the sequences X? and X′,
followed by a result that determines a candidate sequence X?.

Remark 2. The size of the tuple X?, given by τ?, is de-
termined as the smallest integer that permits integer values
to all pure actions y0 ∈ Y ?

0 as they achieve their respective
probabilities in z?0. Further, let τ0 be the maximum number
of time instants required to converge opponents to the Nash
equilibrium via FP. The size of the sequence X′, denoted by
τ ′ is given by

τ ′ = max{τ0, τ?}. (7)

�

For instance, when z?0 is given by ( 2
3 , 0,

1
6 ,

1
6 ), the smallest

value for τ? is 6 which indicates the frequency of pure actions
via τ?z?0 is (4, 0, 1, 1). Further, if the opponents need 3 time
instants to converge to the Nash equilibrium, (7) provides a
value of 6 (= max{3, 6}) for τ ′. As a result, the sequence X′

would be a repetition of the pure action y?0 for 6 time instants.
While Remark 2 provides a way to compute X′ and τ?, they
are not adequate in determining a sequence X?. We provide
a result that achieves the desired strategy below.

Theorem 5. Let the cardinality of Y ?
0 be denoted by m and

the probability vector z?0 be denoted by q? where individual
probability of a pure action ks(ks ∈ Y ?

0 ) is given by q?s . A can-
didate sequence for X? that achieves the twin purpose of (i)
restricting the opponents to the Nash equilibrium (y?0 , y

?
j , y

?
−j)

and (ii) generating expected payoff as given by Theorem 4
when τ →∞ is given as follows:

X? = (k1(1), k1(2), · · · , k1(τ?q?1),

k2(τ?q?1 + 1), · · · , k2(τ?(q?1 + q?2)), · · · ,

km(τ?
m−1∑
s=1

q?s + 1), · · · , km(τ?
m∑
s=1

q?s ))

(8)

k1 = y?0 if q?y?
0
6= 0. (9)

Proof. In order to prove (i), it is adequate to show that the
proposed sequence X? adheres to the constraints in (5) at every
time instant. It follows from Lemma 2 that the opponents’
incentive to deviate from (y?0 , y

?
j , y

?
−j) decreases with repeated

play of y?0 while it increases with the play of any other pure
action in Y ?

0 . Denote by qs(τ) the probability of taking a pure
action ks at any time step in the interval [0, τ ] as calculated
empirically via the histogram of the actions played till time τ .
Then, the constraints in (5) reduce to

qs(τ) ≥ q?s where ks = y?0 (10a)
and qs(τ) ≤ q?s ∀ ks ∈ Y ?

0 \ {y?0}. (10b)

Consider first the case when q?y?
0
6= 0.

1) The first strategy in X? is y?0 and is repeated for
τ?q?y?

0
time instants. Since X? is repeated indefinitely,

the probability qy?
0

of the pure action y?0 after t ∈
{1, 2, · · · , τ?q?y?

0
} time instants in pth repetition is

qy?
0

=
τ ′ + pτ?q?y?

0
+ t

τ ′ + pτ? + t
. (11)
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It can be easily shown that qy?
0
−q?y?

0
≥ 0, proving (10a).

2) For the action ks ∈ Y ?
0 \ y?0 such that ks immediately

follows y?0 in X?, the probability qs after (τ?q?y?
0

+ t)

time instants in the pth repetition is given by

qs =
pτ?q?s + t

τ ′ + pτ? + τ?q?y?
0

+ t
, (12)

with

t ≤ τ?q?s ≤ τ? (13)
τ ′ = τ? + ε, (14)

where the latter follows from (7) and ε is a non-negative
constant integer. (12) and (14) together yield

qs−q?s =
(t− τ?q?s )− q?s (ε+ pτ? + τ?q?y?

0
+ t)

τ ′ + pτ? + τ?q?y?
0

+ t
. (15)

The negativity of the first term in the numerator of
(15) follows from (13) while the second term is always
negative, thus proving (10b).

3) Finally, if additional pure actions are played between y?0
and ks, the value for the denominator in (12) increases
while the numerator remains unchanged. This makes the
expression in (15) more negative.

Now if q?y?
0

= 0, the sequence X′ still contains y?0 but
the sequence X? does not use y?0 . As a result, (11) is
inconsequential while (15) is still negative. This proves (10b)
and thus (i) for the sequence given by (8) and (9).

Since the opponents are restricted to (y?0 , y
?
j , y

?
−j), the IP

gets its payoff promised by Theorem 4 at the end of the
sequence X? in every iteration. This is also evident from
the fact that the probability vector for all pure actions within
the sequence X? is equal to the solution of the Linear
Programming problem (q = q?) at the end of the sequence,
indicating the maximum payoff. As τ →∞, the payoff from
X′ becomes negligible since it is played only once and the
expected payoff converges to the solution of Theorem 4 and
Corollary 1, proving part (ii).

The construction of an optimal trajectory is summarized
in Algorithm 1. The length of the sequences X? and X′ is
provided in Remark 2. For instance, in Example 2, where
y?0 turns out to be C and the mixed strategy z?0 is given by
( 1
9 ,

3
9 ,

5
9 )T, the smallest integer that can achieve X? is 9. Since

convergence to Nash equilibrium from any strategy profile can
be obtained in τ0 = 4 time instants, τ ′ is set to be 9(=
max{4, 9}), per Remark 2. It follows from Theorem 4 and
q?y?

0
6= 0 that the sequence X? begins with y?0 = C and repeats

until its probability is reached within X?. This is followed by
the pure actions A and B until their respective probabilities
are achieved. It is worth noting that this sequence generates
negative values for the expressions in (6) proving that the
constraints are valid at every time instant within the first
iteration of X?. Theorem 5 further proves that the constraints
and probabilities remain valid perpetually. In summary, the
sequence X obtained from X′ = (C,C,C,C,C,C,C,C,C)
and X? = (C,C,C,C,C,B,B,B,A) is indeed an optimal
trajectory and generates an expected payoff of 5.78 as τ →∞.

Algorithm 1: Determination of X for the IP
Input: Game G = (n+ 1, Yi, Ui) and pure Nash

equilibria of subgames G(y0) ∀ y0 ∈ Y0
Output: z?0, y?0 , X′ and X?

1 Initialize r ← |Y0|, c← 0, list V[r], matrix W[r, r]
2 for s← 1 to r do
3 Solve Linear Programming problem for ys0 via (5)
4 Use the solution to obtain W[s, :]← q
5 V[s]←

∑
k∈Y0

qk U0(k, y?j , y
?
−j)

6 end
7 s′ ← argmaxV

8 return y?0 as ys
′

0 and z?0 as W[s′, :]
9 τ? ← smallest integer that can enforce z?0

10 τ0 ← maximum number of time instants to converge
to (y?0 , y

?
j , y

?
−j) in the subgame G(y?

0 )

11 τ ′ = max{τ0, τ?}
12 return X′ as {y?0(1), y?0(2), · · · , y?0(τ ′)}
13 if q?y?

0
6= 0 then

14 for l← 1 to τ?q?y?
0

do
15 c← c+ 1; X?(c)← y?0
16 end
17 end
18 for s← y10 to yr0 except y?0 do
19 for l← 1 to τ?q?s do
20 c← c+ 1; X?(c)← s
21 end
22 end
23 return X?

Example 3. A finite non-degenerate ordinal potential three
player game with respect to the IP (P0) is presented via
Table III. Each player has three pure actions and each matrix
represents the game with respect to one of the pure actions of
the IP. The row player is P1 while the column player is P2.

P2

L N R

P1

U (6,1,1) 1 (1,5,3) 5 (5,9,4) 9

M (1,3,5) 3 (1,4,6) 4 (1,8,9) 8

D (1,2,2) 2 (4,6,7) 6 (1,7,8) 7

P0 ⇔ IP (y0 = A)

L N R

P1

U (5,6,7) 9 (1,8,3) 5 (6,7,5) 8

M (1,2,4) 1 (1,9,6) 6 (1,5,9) 7

D (1,4,1) 2 (3,3,8) 3 (1,1,2) 4

P0 ⇔ IP (y0 = B)

L N R

P1

U (8,6,8) 5 (1,2,1) 1 (9,8,9) 6

M (1,4,7) 4 (1,3,5) 2 (1,1,6) 3

D (1,7,3) 8 (2,5,4) 9 (1,9,2) 7

P0 ⇔ IP (y0 = C)
TABLE III

A FINITE THREE PLAYER GAME G WITH THREE SUBGAMES

In order to identify U?
0 (y) for the IP in Example 3, we

assume that all players employ FP in the sequence of their
indices. Unlike Example 2, the strategies do not converge
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to either a single or a mixed strategy profile. This is not
surprising since the game G itself is not a non-degenerate
ordinal potential game. However, the game G is still within the
class of games we consider in this paper since the subgames
adhere to Definition 2. While computation of U?

0 (y) is not a
part of Algorithm 1, the difference between the expected payoff
from X and the value of U?

0 (y) illustrates the effectiveness of
the algorithm. In order to obtain a tight estimate, we consider
the highest possible value for U?

0 (y) after 100, 000 iterations
of FP by all the players. The highest occurs when the first
strategy profile is (C,D,L) and game converges to the mixed
strategies (0.45, 0, 0.55)T, (0.35, 0, 0.65)T, and (0, 0.2, 0.8)T

generating an expected payoff of 3.89 for the IP.
Algorithm 1 begins with the initialization of the list V[r]

and the matrix W[r, r] (Step 1), where r is the cardinality
of the set Y0. This is followed by determination of r Linear
Programming problems and saving the solution vectors and
optimized function values in W and V respectively (Steps 4
and 5). Step 7 identifies the highest entry in V while Step 8
returns the corresponding pure action as y?0 and the mixed
strategy as z?0. In Example 3, y?0 and z?0 turn out to be A and
(0, 17 ,

6
7 ) while the corresponding highest payoff for the IP is

8.57 (= 60
7 ). This is considerably higher than U?

0 (y) = 3.89
indicating the efficacy of Algorithm 1.

Computation of z?0 and y?0 provides the optimal convergence
based mixed strategy. The remaining steps in Algorithm 1
calculate a strategy trajectory and begin with identifying the
sizes of τ? and τ ′. In Example 3, the smallest integer that can
enforce the probabilities 1

7 and 6
7 is 7, while the FP requires

at most 4 steps to converge to (A,U,R) when the IP plays A
repeatedly. Step 9 thus computes τ? as 7, Step 10 determines
τ0 as 4 while Step 11 computes τ ′ to be max{4, 7} = 7. The
sequence X′ is obtained via Step 12 as (A,A,A,A,A,A,A).

Example 3 illustrates a scenario where q?y?
0

= q?A = 0.
Thus, the IP need not repeat A to restrict the opponents to
the Nash equilibrium of G(A), once the opponents use FP to
converge. Steps 13-17 can be skipped for this example and the
sequence X? begins with B, the lowest indexed strategy from
Y ?
0 . Each of the remaining strategies (say q?s ) are repeated
τ?q?s times until all the strategies are exhausted (Steps 18-22).
Finally, the sequence X? = (B,C,C,C,C,C,C) is returned
by Algorithm 1. The payoff corresponding to X? is 60

7 which
is indeed the expected payoff as τ →∞.

V. CONCLUSIONS

Fictitious play is a popular learning algorithm that converges
to a Nash equilibrium in many classes of games. Here, we
assumed that one player is intelligent that has access to the
entire payoff matrix for the game and need not conform to
fictitious play. We show such a player can achieve a better
payoff than the one at the Nash Equilibrium. This result can
be viewed both as a fragility of the fictitious play algorithm
to a strategic intelligent player and an indication that players
should not throw away additional information they may have,
as suggested by classical fictitious play. Future work will
consist of consideration of other learning algorithms and
presence of multiple intelligent players. Especially for the
latter case, techniques from [25], [26] to tame computational
efficiency will be important.
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