
Rendezvous of multiple agents amidst obstacles

and constraints

A THESIS

submitted by

VUNDURTHY PARVATHISWARA BHASKAR

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2019

THESIS CERTIFICATE

This is to certify that the thesis titled Rendezvous of multiple agents amidst

obstacles and constraints, submitted by Vundurthy Parvathiswara Bhaskar,

to the Indian Institute of Technology, Madras, for the award of the degree of Doc-

tor of Philosophy, is a bonafide record of the research work done by them under

my supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or

diploma.

Dr. K. Sridharan
Research Guide
Professor
Dept. of Electrical Engineering
IIT Madras, Chennai-600036.

Place: Chennai.
Date: 28th of May, 2019.

ACKNOWLEDGEMENTS

I take this opportunity to express my gratitude to my thesis advisor Prof. K.

Sridharan, for his exemplary guidance, monitoring and constructive suggestions

throughout the course of this project. He always made sure that, everything

necessary for the project, be it equipment or knowledge, was readily available.

His sense of timing and his vast area of expertise have inspired me in so many

ways. It has been a wonderful and enlightening experience to work under him.

I would like to thank Prof. Arun D Mahindrakar, for his valuable feedback,

innovative suggestions and his two cents on the concept of PhD itself, very early

on during my research. His constant support until the synopsis stage has been of

immense help to me.

I would like to thank Prof. Ramkrishna Pasumarthy for giving me a real-

ity check a number of times during my PhD and his humorous suggestions that

stopped me from taking a few wrong steps during my time here.

I would like to extend my gratitude to Prof. Bharath Bhikkaji and Prof.

Sandipan Bandyopadhyay for offering a few very crucial courses that shaped my

thought process in approaching various open ended problems.

I would like to extend a special thanks to Prof. Viswanath Reddy, whose

expertise in Game Theory and the caliber to deliver it in a student friendly manner

has been of great help to me. His passion towards this field has helped me inculcate

the same and utilize the knowledge in one of the chapters of this thesis.

I would like to thank my seniors Dr. Vikramkumar Pudi, Dr. Srinivasu Boda-

pati and Dr. Vijay Muralidharan for paving the path in this long journey of PhD.

Their timely advises, practical examples and humorous ways of handling pressure

have helped me quite a few times.

I would like to thank my colleague Dr. Krishna Chaitanya Kosaraju whose

light personality and cheerful attitude, in addition to his expertise in research has

i

made the life at IIT Madras far more enlivening. I would also like to thank Lokesh

Chintala for being an instrumental part in the fabrication of the humanoid utilized

in chapter 7. Finally, Jeshma Fahad deserves a special thanks for supporting me

during my various seminars with her unique style of constructive criticism.

I would like to extend my thanks to all my friends Aravind Devarakonda,

Arun Anand, Bhargava S Boga, Dadavali Dudekula, Rajesh KSV, Raju Dasari

and Roopesh Kumar Raya who made me the person that I am today. They

continue to positively influence my life and will always be my anchors.

I would also like to extend my thanks to my colleagues Sharad Kumar Singh,

Yashrajsinh Parmar, Akshit Saradagi, Nagachandrika Reddy and all the students

from the associated labs here at IIT Madras. Being part of their wonderful and

enlivening groups has helped me in the toughest of days. A special thanks extends

to Rama Srinivas, Seshasaye Behera, Vivek Vysyaraju, Marv and Priya for making

my life at IIT Madras as fun as it could be.

My family has worked really hard their entire lives to mold me into the per-

son I am today. I would have broken down a number of times, if not for their

timely help and support. I extend my heartfelt thanks to my parents Srinivasa

Rao and Bhu Lakshmi, my brother Pavan Chandra and my uncle Ramachandra

Rao for everything they have done and more. A special thanks extends to my

brother for fulfilling various roles in many tough situations and offering his untir-

ing support throughout. In addition, I would like to especially thank my fiancee

Udaya Sree Datla, for believing in me. Her practical approach towards life and

her compassionate nature has always been very inspiring.

Finally, I would like to thank the almighty God for giving me the strength,

knowledge, ability and opportunity to undertake this research study and to per-

severe and complete it satisfactorily.

Chennai

May 2019 Vundurthy Parvathiswara Bhaskar

ii

ABSTRACT

KEYWORDS: Rendezvous, Distance Constraints, Obstacles, Shortest Paths, Hard-

ware efficient Algorithms, Implementation

Teams of robots are typically employed for various purposes to complete a task

faster than a single robot. Robots that need to interact to accomplish some task

may not, however, be physically at the same location. They may be distributed

and need to come together. This is commonly referred to as the rendezvous prob-

lem in the literature. The rendezvous problem has been studied by researchers in

computer science, economics, control and other domains with different assump-

tions and objectives.

Our interest is in rendezvous of multi-agent systems amidst various constraints

and obstacles. In this thesis, we impose constraints on the individual and total

distance travelled by all the agents and compute an optimal rendezvous location

in the plane amidst various obstacles. We present hardware-efficient algorithms to

compute these optimal locations and discuss implementation via locally fabricated

mobile robotic setup. While rendezvous has been a well studied area, prior work

on computing optimal locations for rendezvous, especially amidst obstacles and

distance constraints is limited.

Further, we impose constraints on the time taken for rendezvous and once

again compute an optimal location that facilitates rendezvous of multiple agents

amidst arbitrary number of obstacles in minimum time. We also explore the no-

tion of competitive rendezvous where the agents compete to achieve rendezvous

at two different locations. In other words, we explore the effect of an adversary

that attempts capture of an agent (the first rendezvous) while the agent itself is

interested in being rescued by a fellow agent at an alternate rendezvous location.

Finally, we discuss a sensor-based rendezvous of two heterogeneous robots: a mo-

bile robot and a bipedal robot. Each of these works is supported by experimental

verification of the proposed algorithms.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES xi

NOTATIONS AND ABBREVIATIONS xii

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Rendezvous Amidst Obstacles and Constraints 3

1.3 Contributions of the thesis . 7

1.3.1 Rendezvous of agents amidst obstacles while minimizing the
maximum of distances travelled 7

1.3.2 Rendezvous of agents amidst obstacles while minimizing the
sum of Euclidean distances of travel 9

1.3.3 Rendezvous of a pair of agents in the presence of an adver-
sary . 9

1.3.4 Time optimal rendezvous of multiple agents amidst obstacles 10

1.3.5 Extension to heterogeneous robots without distance con-
straints . 11

1.4 Organization of the thesis . 11

1.5 Summary . 12

2 LITERATURE SURVEY 13

2.1 Shortest path computation amidst obstacles 13

2.2 Rendezvous in multi-agent systems 14

2.3 Geometric aspects of rendezvous with minimax and minsum dis-
tance criterion . 15

iv

2.4 Rendezvous of a pair of agents in the presence of an intelligent
obstacle . 17

2.5 Time Optimal Rendezvous in multi-agent systems 18

2.6 Summary . 18

3 GATHERING OF WHEELED MOBILE ROBOTS WITH COL-
LISION AVOIDANCE AND A MINIMAX DISTANCE CRI-
TERION 19

3.1 Assumptions and Terminology 20

3.2 Rendezvous Point for a Pair of Agents amidst n Polygonal Obstacles 22

3.3 Computation of Weighted Minimax Point PW
M 24

3.3.1 Weighted Minimax Point for Two and Three Agents . . . 24

3.3.2 Weighted Minimax Point for k Agents 28

3.4 Computation of the Rendezvous Point PG 31

3.4.1 Key Results in computing PG 32

3.4.2 Efficient Algorithm to compute the Rendezvous Point . . 34

3.4.3 Communication among Agents for rendezvous at PG . . . 36

3.4.4 Enhancement to handle Collisions among Agents 37

3.5 Implementation Aspects for rendezvous of Mobile Robots 39

3.5.1 Numerical Aspects in Implementation of the Algorithms on
Resource-Constrained Platforms 41

3.5.2 Summary of Experiments 42

3.6 Summary . 44

4 RENDEZVOUS OF WHEELED MOBILE ROBOTS AMIDST
OBSTACLES MINIMIZING THE SUM OF EUCLIDEAN DIS-
TANCES 45

4.1 Terminology and Assumptions 46

4.2 Computation of Minsum Point PS 47

4.2.1 Minsum Point for Three Agents 47

4.2.2 Minsum point for four agents 48

4.3 Rendezvous Point PU for a Pair of Agents 49

4.4 Hardware-Efficient computation of PU 49

4.4.1 Key Results . 50

4.4.2 Direct and Efficient Algorithms to compute PU 54

v

4.5 Implementation of the Algorithm on Mobile Robots 58

4.5.1 Experiments with Three Robots Amidst Obstacles 59

4.5.2 Rendezvous when a Robot Blocks another’s Path 59

4.5.3 Experiments with Four Robots Amidst Obstacles 60

4.6 Summary . 61

5 GATHERING OF FRIENDLY AGENTS AMIDST AN AD-
VERSARY EQUIPPED WITH A VISION SENSOR 62

5.1 Definitions and Assumptions . 63

5.2 A Geometric Framework for Solution 64

5.2.1 Interactions between the Two Agents and Adversary . . 65

5.3 Safe regions and capture-rescue algorithms 71

5.4 Experimental Verification with mobile robots 74

5.5 Summary . 76

6 TIME OPTIMAL RENDEZVOUS FOR MULTI-AGENT SYS-
TEMS 78

6.1 Key Results . 78

6.1.1 Computing TORP for k agents 79

6.1.2 Computing TORP using intermediate locations of k agents 81

6.2 Algorithm to Compute TORP for Multiple Agents Amidst Static
Obstacles . 85

6.3 Extension to Handle Moving Obstacles 88

6.4 Experimental Validation of Algorithms 89

6.5 Comparisons . 90

6.6 Summary . 91

7 RENDEZVOUS OF HETEROGENEOUS ROBOTS AMIDST
UNKNOWN OBSTACLES WITH LIMITED COMMUNICA-
TION 92

7.1 Assumptions and Terminology 93

7.1.1 Assumptions . 93

7.1.2 Terminology . 93

7.2 Key Results Pertaining to IR Transmission 94

7.3 Proposed Algorithm for Rendezvous 97

vi

7.3.1 Adaptation Algorithm 97

7.3.2 Algorithm for Determining Direction of Turn 99

7.3.3 The Rendezvous Algorithm 100

7.4 Experimental verification . 102

7.5 Summary . 104

8 CONCLUSIONS 105

8.1 Contributions of the Thesis . 105

8.2 Extensions and Future Work . 107

LIST OF TABLES

6.1 Comparison of various features of proposed algorithms with prior
works involving time-optimal rendezvous 90

6.2 Comparison of various aspects of experimental setup 91

viii

LIST OF FIGURES

1.1 Two rendezvous points R1 and R2 illustrating minimax distance
constraint. R2 has a lower maximum of distances value compared
to R1. 4

1.2 Two rendezvous points R1 and R2 illustrating minsum distance con-
straint. R1 has a lower sum of distances value compared to R2. . 5

1.3 Dominance regions of two agents R and E travelling with speeds
vr and ve. The region shaded in green is dominated by E and
vice-versa. 6

1.4 Custom fabricated differential drive mobile robots with rotary en-
coders and distance sensors supported by an Arduino UNO. . . 8

1.5 Experimental setup for vision-guided adversary 10

3.1 Rendezvous of a pair of agents (P1 and P2) in the presence of a
non-convex polygonal obstacle 21

3.2 Rendezvous point (PG) for two agents in the presence of three polyg-
onal obstacles . 24

3.3 Weighted Minimax point PW
M for two and three agent locations with

non-zero weights . 27

3.4 Illustration of Algorithm Minimax point weighted (a) Steps
1 and 2 (b) Steps 3 and 4 . 30

3.5 PG and PM for six agents amidst three polygonal obstacles . . . 32

3.6 Illustration of special cases in computation of PG 36

3.7 Mobile robot and schematic of interconnections between various
hardware components . 40

3.8 Characteristics of mobile robots used 40

3.9 Numerical aspects in implementation of the algorithms 42

3.10 Rendezvous of four agents in the presence of three static obstacles 43

3.11 Rendezvous of three agents while one agent obstructs another’s path 43

4.1 Illustration of minsum point PS for three agents at A,B and C. 47

4.2 Minsum point PS for four agents where the robot locations form a
(a) convex and a (b) non-convex quadrilateral. 48

4.3 Rendezvous point PU lies on the shortest path from A to B. . . 49

ix

4.4 The rendezvous at P can be ignored in lieu of the rendezvous at Q
due to the latter’s lower sum of distances value. 51

4.5 4Q1Q2Q3 of Lemma 8 turn out to be 4AO3
1C 53

4.6 Computation of PU via an incremental addition of obstacles . . 56

4.7 Rendezvous of three mobile robots amidst two obstacles 59

4.8 Rendezvous of three robots while P3 acts as an obstacle to P1 . 60

4.9 Rendezvous of four robots amidst obstacles 61

5.1 Scenario involving one delivery agent (D), one rescue agent (R)
and an adversary (A). The rescue agent (R) is indicated by a green
triangle, adversary (A) by a red star and delivery agent (D) by a
blue square. 64

5.2 Dominance curves (C0, Ct) for initial and intermediate locations of
delivery (D,Dt) and rescue (R,Rt) agents. 66

5.3 Adversary’s (A) vision based pursuit of delivery agent (D) heading
in a fixed direction θd. va = 5, vd = 2 and DA = 13. (a) ts=0.4 (b)
ts=1.0 . 69

5.4 Dominance curve Ca and dominance regions (Sda,¬Sda) of delivery
agent and adversary. va = 3, vd = 1, da = 2.5, ts = 0.4 and DA =
20. 70

5.5 Computation of safe region Sh and a successful rescue attempt . 72

5.6 Rescue of delivery agent in its safe region 75

5.7 Adversary handles occlusion of vision 76

6.1 Illustration of rendezvous points and travel times for four agents 79

6.2 TORP for 9 agents is the center of the smallest enclosing circle Ct 80

6.3 Illustration of rendezvous points for three agents with non zero
weights . 81

6.4 TORP (Rt) for 7 agents with non-zero weights at their locations 84

6.5 Computation of TORP for three agents amidst three obstacles . 86

6.6 Time-optimal rendezvous of five agents amidst two obstacles . . 89

6.7 Time-optimal rendezvous for three agents amidst one static and one
moving obstacle (AGV) . 90

7.1 Various zones for a transmitter placed at A in the presence of a line
segment obstacle Ob1Ob2 . 95

7.2 Absence of Zone 1 in this setting 96

7.3 Pololu IR Transceiver used for the experiment 102

x

7.4 Different positions leading to rendezvous 103

xi

NOTATIONS AND ABBREVIATIONS

NOTATIONS

k Number of agents or robots

n Number of obstacles

c Number of vertices per obstacle

P1, P2, · · · , Pk Agent or robot locations

d1, d2, · · · , dk Weights on agent locations

t1, t2, · · · , tk Times lost by agents in reaching Pi

Q1, Q2, · · · , Qk Last turn locations

O1, O2, · · · , On Polygonal obstacles

O1
i , O

2
i , · · · , Oc

i c vertices of the obstacle Oi

Z1, Z2, · · · , Zn Reflective zones

D Delivery Agent

vd Maximum speed of delivery agent

R Rescue Agent

vr Maximum speed of rescue agent

dr Limiting distance of rescue agent

A Adversarial agent

va Maximum speed of adversary

da Limiting distance of adversary

C Dominance circle

Sda Dominance region of D with respect to A

¬Sda Dominance region of A with respect to D

Sdr Dominance region of D with respect to R

¬Sdr Dominance region of R with respect to D

Sh Safe region for rendezvous

T Meeting location

Tt Time for rendezvous

xii

Rt Time Optimal Rendezvous Point (TORP)

A, B Heterogeneous agents

TA, TB Transmitters on A and B

Rn Reflective Index

In the absence of obstacles

PM Minimax point

PW
M Weighted minimax point

Pij Weighted minimax point of agents Pi and Pj

Pijk Weighted minimax point of agents Pi, Pj and Pk

PS Minsum point

In the presence of obstacles

PG Rendezvous point satisfying minimax distance constraint

PU Rendezvous point satisfying minsum distance constraint

CH Convex Hull of agent locations and obstacle vertices

ABBREVIATIONS

TORP Time Optimal Rendezvous Point

AGV Automated Guided Vehicle

DS Distance Sensor

VS Vision Sensor

WC Wireless Communication

CHT Circular Hough Transform

RF Radio Frequency

xiii

CHAPTER 1

INTRODUCTION

Autonomous mobile robots have been extensively used since approximately the

1970s in applications involving transfer of goods from one point to another. As

a robot moves towards its destination, its primary objective is to avoid collisions

with objects (machines, furniture etc.) along the way. Considerable research in

mobile robotics has focussed on planning motions avoiding obstacles. Different

assumptions about the environment and the capabilities of the robot have been

made. Early works (Lozano-Perez and Wesley (1979) and Schwartz and Sharir

(1983)) have assumed the existence of complete geometric models. Research in

the late-1980s (Lumelsky and Stepanov (1987), Rimon and Koditschek (1992))

has been directed to sensor-based planning with limited or no prior knowledge of

the geometry of the objects in the environment. Restrictions on capabilities of the

sensors have also been investigated. A detailed description of various approaches

for planning is available in Latombe (1991).

Since the late 1990s, research in autonomous mobile robotics has moved along

another direction. Several research groups have explored the power of teams of

mobile robots operating in indoor and outdoor environments to perform different

tasks. A team of robots, in general, can accomplish a task faster or more effectively

than a single robot. However, several challenges arise when a team of robots is

involved. The challenges are no longer limited to collision avoidance among the

robots or obstacles. For example, the members that are part of a team may not be

in the same physical location to begin with. Further, a team may have to get into

a specific “structure” (or formation) to accomplish a certain task. Also, a team

may be obstructed in some way by an autonomous intruder. Keeping these in

view, three categories of problems have emerged. The first category is formation.

Early work (Yamaguchi (1999)) involved design of control strategies to coordinate

the motion of multiple holonomic mobile robots to capture/enclose a target via

troop formations. A number of variations of the basic formation task have been

studied (Fax and Murray (2004), Ren and Beard (2005)). The second category of

problems studied is rendezvous of a set of robots that are geographically separated.

It is worth noting that sensors on a robot may not be powerful enough to allow

uniting with another robot readily to form a team. Early work on rendezvous of

a set of mobile robots with limited visibility is described in Ando et al. (1999).

Extensions to this have been explored in Ganguli et al. (2009) and Yu et al. (2012).

In both formation as well as rendezvous, the robots are engaged in cooperative

activity. In other words, the robots move together or attempt to unite. A detailed

account of recent work on formation and rendezvous is provided in Bullo et al.

(2009). A third category of problems (arising especially in defence and security

applications) involving multiple mobile robots is where there is an adversary or

a tracker to thwart/monitor the movement of other robots. This category of

problems has been generally studied in the domain of game theory (Murrieta-Cid

et al. (2007)).

The focus of this thesis is on rendezvous of mobile robots. In order for robots

to successfully unite, communication among them is essential. The term agents is

generally used to refer to autonomous vehicles that communicate with each other.

We will use the term agents henceforth and describe the work in this thesis with

reference to agents.

1.1 Motivation

While considerable work has been done on the rendezvous problem in general and

variants, some aspects that have a direct impact on the energy consumed by the

system during rendezvous have not been explored. In particular, the distance

travelled by the agents before they meet can directly impact the total energy

consumed.

The work described in this thesis is motivated by the following questions: Does

there exist an optimal location in the plane where the agents can meet to perform a

collaborative task? If such a location exists, how is it influenced by adding obstacles

into the environment? Finally, can the algorithms designed to compute optimal

locations be implemented with limited hardware on-board?

The optimality of the location is in terms of the distance travelled by the agents.

2

Several notions of distance are possible (and these will be discussed further in

section 1.2). Computing an optimal location (and moving to the same) has direct

applications in minimizing fuel consumption and the time taken to commute.

Algorithms for rendezvous with constraints on distance are also applicable in

defence scenarios where two or more friendly groups intend to meet while en-

suring that they optimize their individual or collective distances travelled. The

groups can treat hostile/hazardous areas as obstacles. A similar application ex-

ists in a busy city environment where computation of an optimal location (amidst

various constraints) allows rendezvous of a group in minimum time. Sometimes,

rendezvous has to take place in the presence of an adversarial entity which tries

to prevent the meeting of two or more agents. In the next section, we explain in

detail the various problems addressed in this thesis and the relevant terminology.

1.2 Rendezvous Amidst Obstacles and Constraints

One approach to obtain an optimal location for rendezvous is by enforcing a con-

straint on the Euclidean distance travelled by each agent. The first problem we

address in the thesis concerns minimizing the maximum distance (henceforth re-

ferred to as the minimax distance) travelled by any agent prior to rendezvous.

The distance travelled by an agent is directly related to the energy consumed and

by minimizing the maximum distance, the agents effectively optimize the maxi-

mum loss in energy during commute. Consequently, agents with a limited power

resource, such as autonomous mobile robots, benefit tremendously.

In a practical scenario, however, the agents operate in an environment where a

number of objects obstruct the paths of the robots. It is thus of interest to compute

an optimal location in the plane while imposing a minimax distance constraint as

the agents travel amidst these obstacles. Fig. 1.1 illustrates the locations of three

agents P1, P2 and P3 amidst three quadrilateral obstacles O1, O2 and O3. Two

rendezvous points R1 and R2 are arbitrarily chosen for illustrative purposes and

the respective distances from the agent locations are shown. Assuming each robot

is small and can therefore be represented by a point, the distance between any

3

two points is evaluated as their respective Euclidean 2-norm.

P1
R1
P3O3

P2O2O1 R2
6.04.36.6 2.7 10.0 9.2

15.8
17.5 6.0

Figure 1.1: Two rendezvous points R1 and R2 illustrating minimax distance con-
straint. R2 has a lower maximum of distances value compared to R1.

In the presence of obstacles, the distance from an agent location to a ren-

dezvous point is the length of its shortest path. For instance, when attempting to

meet at R1, the agent at P1 travels a distance of 9.3 units (= 6.6 + 2.7) while in-

corporating the turn at the vertex of obstacle O1. Similarly, the distances from P2

and P3 are 19.2 and 10.3 respectively. Thus the agent at P2 travels the maximum

distance prior to its arrival at R1. However, none of the obstacles obstruct the

paths of agents when attempting to rendezvous at R2 where the agent at P1 trav-

els the maximum distance of 17.5 units. The minimax distance criterion prefers

rendezvous at a location with a lower maximum of distances value, which in this

case, turns out to be at R2.

The challenge that arises is efficient search of the plane to obtain a unique

location that minimizes the maximum of distances travelled from each of the

agent locations. Further, an algorithm that is implementable on autonomous

mobile robots needs to be developed that could handle an arbitrary number of

agents and obstacles.

While a minimax distance constraint optimizes the distances with respect to

each individual agent, an alternate criterion involves minimizing the sum of dis-

tances of travel (henceforth referred to as the minsum distance constraint). This

is the second problem addressed in this thesis. The minsum constraint optimizes

the total energy utilized in commute prior to rendezvous. This constraint is espe-

cially useful when the agents belong to the same group and the cumulative effect

of energy consumed is of interest.

4

P1
R1
P3O3

P2O2O1 R2
6.04.36.6 2.7 10.0 9.2

15.8
17.5 6.0

Figure 1.2: Two rendezvous points R1 and R2 illustrating minsum distance con-
straint. R1 has a lower sum of distances value compared to R2.

Fig. 1.2 illustrates minsum distance constraint for the same locations of agents

and obstacles as in Fig. 1.1. However, the sum of distances to R1 is 38.8 units

while the same to R2 is 39.3 units. As a result, the minsum distance constraint

prefers rendezvous at R1 over R2. It is worth noting that the minimax and minsum

distance constraints need not lead to the same location. Further, the challenges

offered by the two problems are unique in their own way and it is thus of interest to

study the development of a hardware-efficient algorithm for computing the optimal

location with respect to the minsum distance constraint with an arbitrary number

of obstacles.

It is worth mentioning that these problems are different from the path finding

problem since the destination is known in the latter. In the computation of an

optimal location (for solving the minimax and minsum problems), it is necessary

to scan the entire plane where the shortest path computation is merely used as

a substep (as illustrated in figures 1.1 and 1.2) in evaluating distances between

agent and rendezvous locations.

Thus far, the rendezvous of agents was restricted to the areas in the plane that

are not occupied by obstacles. Scenarios where an adversary deliberately tries to

prevent rendezvous of agents offer additional challenges since the admissible area

for rendezvous is no longer determined by the boundary of obstacles. We refer

to this problem as adversarial rendezvous and identify regions (and an optimal

location) where rendezvous is feasible even in the presence of an adversary. In

this problem, cooperation and conflict exist simultaneously and the computation

of optimal location is performed in real time utilizing the positions and speeds of

5

agents and the adversary.

Handling an adversary calls for determining regions in the plane where a spe-

cific agent dominates or arrives earlier than others. Fig. 1.3 illustrates the notion

of these dominance regions for two agents R and E travelling with unequal speeds

vr and ve respectively, where vr > ve. The collection of all the locations where

E reaches prior to R turns out to be the region internal to the circle C and is

termed as the dominance region of E. On the other hand, the region external to C

is the dominance region of R. The curve that separates these dominance regions

is referred to as the dominance curve. In Fig. 1.3, dominance curve happens to

be a circle C with radius rre. This circle is often referred to as the Apollonius’

circle in literature and is defined as the set of points that have a given ratio of

distances (vr
ve

) to two given points (agent locations R and E respectively). The

agent locations thus act as the foci of this circle.

R,vr E,vet1 t1 cre rre
C

Figure 1.3: Dominance regions of two agents R and E travelling with speeds vr
and ve. The region shaded in green is dominated by E and vice-versa.

When R acts as an adversary, it is desirable to identify a rendezvous location

within the dominance region of E, since any point external to it is dominated

by R and ensures capture. One approach to determining C is identifying all

the locations in the plane where R and E arrive simultaneously, generating the

Apollonius’ circle. Such a construction inherently assumes communication among

the agents and adversary. This is, however, not practical since an adversary would

typically acquire information about the agents via some sensing mechanism. We

thus explore the interaction between a vision-guided adversary and mobile agents

while allowing communication only among the latter. The contributions in this

regard are discussed in Section 1.3.3.

Having studied the effect of distance and speed on rendezvous of agents, we also

6

explore the problem of minimum time rendezvous of an arbitrary number of mobile

agents. We study this in the presence of polygonal obstacles while motivating

the need for efficient algorithms that allow a quick recomputation of the optimal

location. Finally, we briefly study a sensor based rendezvous of heterogeneous

robots (namely, a mobile robot and a bipedal robot) without distance constraints.

1.3 Contributions of the thesis

The contributions of this thesis are as follows.

� Computing an optimal location with minimax distance constraint for k
agents amidst n polygonal obstacles in O(k2 + kn log n) time.

� Computing an optimal location with minsum distance constraint for 3 and
4 agents amidst n polygonal obstacles in O(n2 log n) time.

� Computing an optimal location where two non-identical agents achieve ren-
dezvous when faced with an intelligent obstacle (an adversary) that travels
at a superior speed.

� Computing an optimal location that minimizes the total time prior to ren-
dezvous of k agents amidst n polygonal obstacles.

� Extension to sensor based rendezvous of a pair of heterogeneous agents
amidst obstacles with minimal sensing in the absence of any distance con-
straints.

� Implementation of all the algorithms on custom fabricated mobile robots
equipped with only a microcontroller (no external memory) and no commu-
nication with a central controller.

We now explain each of these contributions in detail in the subsections that

follow.

1.3.1 Rendezvous of agents amidst obstacles while mini-

mizing the maximum of distances travelled

The computation of an optimal rendezvous location (denoted by Pg) with the

minimax distance constraint amidst obstacles is the first major contribution of

the thesis. Prior work on this constraint is largely limited to environments that

do not contain obstacles. In particular, to our knowledge, only Wynters and

7

Mitchell (1993) consider meeting of a pair of agents with line of sight commu-

nication between them, amidst obstacles. The authors present an O(n3 log n)

algorithm under the minimax metric where n is the total number of vertices. In

this thesis, we show that when only two agents are involved, the computation

of such an optimal rendezvous location takes no more than the time involved in

computing the shortest path from one agent to another (i.e., O(n log n) due to

Hershberger and Suri (1999)).

Further, we generalize this result to k agents. We first show that the rendezvous

point is a function of either two or three agent locations and provide an algorithm

to identify these among the k locations. We then introduce obstacles and show

that the rendezvous point in the presence of obstacles lies on the same side of

the rendezvous point computed in their absence. With the help of this result, we

compute the optimal rendezvous location (Pg) amidst n polygonal obstacles with

a constant number of vertices in O(k2 + kn log n) time.

Figure 1.4: Custom fabricated differential drive mobile robots with rotary en-
coders and distance sensors supported by an Arduino UNO.

We then present an implementation of the algorithm on custom fabricated

mobile robots (shown in Fig. 1.4) equipped with only a microcontroller. The

computation of the optimal location involves identifying the points of intersection

of two or more branches of hyperbolas. Small mobile robots equipped with just

microcontrollers cannot directly handle such computations. We thus present a

procedure that samples each curve and computes the point of intersection with an

accuracy that can be handled by the physical robot.

8

1.3.2 Rendezvous of agents amidst obstacles while mini-

mizing the sum of Euclidean distances of travel

As indicated earlier, instead of minimizing the maximum distance, one could min-

imize the total Euclidean distance. To our knowledge, in the presence of obstacles,

work on this is once again limited to Wynters and Mitchell (1993) where only a

pair of agents are considered. We show that, every point on the shortest path

joining the two robots results in identical sum of distances value and thus is the

optimal rendezvous location. The point can thus be computed in O(n log n) time.

Considerable work exists on calculating the point that achieves the least total

distance in the absence of obstacles. For three (see Krarup and S.Vajda (1997))

as well as four (see Melzak (1974)) agents, this point can be constructed geometri-

cally. However, when number of agents exceeds four, Cockayne and Melzak (1969)

show that this point cannot be obtained as an algebraic expression involving rad-

icals, thus necessitating an iterative algorithm due to Weiszfeld (1936).

We thus consider the cases of three and four agents in the presence of n polyg-

onal obstacles. We show that by handling the environment suitably, one need not

scan the entire plane for the rendezvous point. Further, by careful introduction of

obstacles in a specific sequence, one quickly arrives at the rendezvous point. We

then present a hardware efficient implementation of the algorithm on the afore-

mentioned mobile robots (Fig. 1.4).

1.3.3 Rendezvous of a pair of agents in the presence of an

adversary

Instead of having obstacles and considering rendezvous of friendly robots (agents),

one may encounter a scenario where one agent serves as an intelligent obstacle and

opposes the rendezvous of others. In particular, we consider three agents where one

serves as an adversary (or as an intelligent obstacle) for the other two. We equip

the adversary with a vision sensor and allow communication only between the

pair of friendly agents. The advantage of communicating the rendezvous location

between the pair of friendly agents is matched by allowing the adversary traverse

9

at superior speeds.

When the adversary is equipped with only a vision sensor and does not have

complete location information of the agents, the dominance curve is no longer the

Apollonius circle. We present algorithms to compute these dominance curves and

discuss the notion of safe region where a successful rendezvous can occur, given

the maximum speeds of the agents and adversary. The outcome of the game is

thus determined by whichever occurs earlier: capture by adversary or rescue by

fellow agent.

(a) An adversary equipped with Raspberry Pi (b) Circular Hough Transform (in yellow)

Figure 1.5: Experimental setup for vision-guided adversary

An implementation of the algorithm for capture or rescue has been performed.

A Raspberry Pi board provides processing support for the adversary while a Pi

camera (as shown in Fig. 1.5(a)) acts as the vision sensor. It is worth noting that

the processing of images by vision sensors is handled on-board and no additional

support (from a PC) is necessary. Fig. 1.5(b) is an image from the point of view

(POV) of the adversary where the Pi computes a Circular Hough Transform on

the image captured and identifies a mobile agent. The radius of the circle indicates

the distance of the agent from the adversary.

1.3.4 Time optimal rendezvous of multiple agents amidst

obstacles

Having explored rendezvous amidst various distance constraints and intelligent

obstacles, it is of interest to study rendezvous when time, instead of distance,

serves as the constraint. The time optimal rendezvous point or the point corre-

10

sponding to minimum time rendezvous, in the absence of obstacles turns out to

be the center of the smallest enclosing circle of all agent locations. When obsta-

cles are introduced into the environment, the agents need to take turns at various

obstacle vertices. Taking this change into account, we introduce the notion of

weights at the agent locations where the weight on an agent is the time lost in

commute prior to its arrival at the given location. We show that the time optimal

rendezvous point for k agents amidst n obstacles is the center of the smallest en-

closing circle of k circles whose radii are their respective weights. We present an

O(k2 + kn log n) algorithm to compute the same and validate it with the help of

experiments involving differential drive mobile robots.

1.3.5 Extension to heterogeneous robots without distance

constraints

We have so far assumed complete information of the agent locations and the envi-

ronment. We also briefly address sensor-based rendezvous of agents with limited

information. An algorithm that is independent of the kind of robots involved has

been developed. However, no distance constraints are imposed on the rendezvous.

We study a specific setup that involves a Pololu IR beacon to identify the direction

of motion for individual robots. Preliminary experiments with a wheeled robot

and a bipedal robot are also presented.

1.4 Organization of the thesis

The next chapter Chapter 2 presents the details of relevant prior work on ren-

dezvous of mobile agents. Emphasis is placed on various topics involving distance

constraints while handling obstacles, adversarial rendezvous and sensor-based ren-

dezvous.

Chapter 3 presents hardware-efficient algorithms to compute optimal location

with respect to the minimax distance constraint. Experiments on a mobile robotic

framework have also been described.

Chapter 4 presents algorithms to compute optimal locations with respect

11

to the minsum distance constraint. The chapter also presents an incremental

algorithm that allows for a quick computation of the optimal location. Implemen-

tations of the algorithms on mobile robots are also provided.

Chapter 5 discusses rendezvous amidst an adversarial agent and presents algo-

rithms to compute optimal locations for rendezvous via the notion of safe regions.

Experimental verification with autonomous mobile robots is also described.

Time optimal rendezvous of mobile agents amidst obstacles is presented in

Chapter 6. Algorithms and experimental verification are also given.

Theory and experiments pertaining to a specific sensor-based rendezvous of

heterogeneous agents in the absence of distance constraints are presented in Chap-

ter 7.

Chapter 8 summarizes this dissertation and discusses directions for future

research.

1.5 Summary

This chapter has presented the motivation for the work described in this thesis.

Terminology and definitions appropriate for discussing the contributions are given.

The contributions have been enumerated and briefly described. In the next chap-

ter, we present details of prior work on rendezvous of mobile agents amidst various

constraints.

12

CHAPTER 2

LITERATURE SURVEY

This chapter is devoted to a review of the literature on rendezvous of multi-

agent systems. Throughout this thesis, the emphasis is on rendezvous amidst

obstacles with constraints on the distances or time travelled by the agents. Once

a rendezvous location incorporating the constraints is computed, the agents need

to traverse along the shortest paths from their respective initial locations. We thus

begin with the discussion on prior work that computes the shortest path between

two locations with polygonal obstacles in the environment.

2.1 Shortest path computation amidst obstacles

The Euclidean shortest path problem is one of the well-studied problems in compu-

tational geometry. Given a planar set of polygonal non-intersecting obstacles, the

problem involves computing the shortest path between two points avoiding inter-

sections with the interior of all the obstacles. Solution techniques for this problem

can be classified into two primary approaches: the visibility graph method and the

shortest path map method. While there are algorithms to calculate approximate

solution to the shortest path, we focus on the literature dealing with computation

of exact solution.

The visibility graph method is based on constructing a graph whose nodes

are the vertices of the obstacles and whose edges are pairs of mutually visible

locations (or vertices). The shortest path between two locations can then be

found by running Dijkstra’s algorithm on this graph (Dijkstra (1959), Cormen

et al. (2009)). Overmars and Welzl (1988) study efficient ways of computing the

visibility graph while Rohnert (1986) and Kapoor and Maheshwari (1988) utilize

the visibility graph to compute the shortest path. An output sensitive algorithm

for computing the visibility graph with a complexity of O(n log n+E) is presented

by Ghosh and Mount (1987), where E is the number of edges in the graph and n

is the total number of obstacle vertices.

The second approach builds a shortest path map for a given source location

to all the vertices of obstacles and the destination such that these points have the

same vertex sequence as the shortest path to the source location. This map is

essentially an encoding of shortest paths from the source location to all the points

of interest in the plane. Mitchell (1996) provides an algorithm for computing the

shortest path map that runs in O(n3/2+ε) time and space, for any ε > 0 via an

advanced range searching data structure. The research in this direction culmi-

nates with the work of Hershberger and Suri (1999) who take the shortest path

map approach and build a subdivision of the plane. Optimal search techniques

presented in Kirkpatrick (1983) and Edelsbrunner et al. (1986) are then utilized

to compute the shortest path in an optimal O(n log n) time.

In the context of rendezvous of multiple agents, computation of shortest path

amidst obstacles is merely a substep in determining the rendezvous location. We

now move to prior work on rendezvous of multi-agent systems.

2.2 Rendezvous in multi-agent systems

One of the earliest works that concerns a group of autonomous agents is due to

Vicsek et al. (1995). Early work in multi-agent consensus includes Jadbabaie et al.

(2003), Olfati-Saber and Murray (2004) and Ren and Beard (2005). Chen et al.

(2006) discuss coordination among agents from a dynamic systems perspective.

The authors in Olfati-Saber et al. (2007) present a framework to study consensus

and coordination in multi-agent systems. An et al. (2007) present algorithms for

transitive dependence-based coalition formation.

In this thesis, the interest is on achieving rendezvous in multi-agent systems

amidst constraints. Early work on this problem is due to Ando et al. (1999) who

discuss rendezvous in the context of limited visibility among the agents. Following

this, various additional constraints have been imposed either on the environment

or on the dynamics of the robots. For instance, Ganguli et al. (2009) discuss

rendezvous in a simply-connected and non-convex environment with constraints

14

on visibility sensors. In the context of multi-robot path planning, Bhattacharya

et al. (2010) impose pairwise constraints on distributed optimization. Yu et al.

(2012) discuss rendezvous in the absence of coordinates or communication among

agents. An article by Cao et al. (2013) summarizes the contributions in the last

decade to distributed multi-agent coordination.

Han et al. (2013) provide necessary and sufficient conditions for robust first and

second-order consensus for a class of multi-agent dynamical systems. Consensus

in multi-agent systems with sampled position and velocity data has been studied

by Yu et al. (2013). The flocking problem for multi-agent systems is studied via

model predictive control in Zhan and Li (2013). The authors in Leitão et al. (2013)

present the state of the art in applications of industrial agents. They point to the

potential of multi-agent coordination in military, defense and humanitarian relief

applications.

2.3 Geometric aspects of rendezvous with mini-

max and minsum distance criterion

While a large body of work exists on rendezvous of mobile robots in general, the

determination of a globally optimal location, especially amidst obstacles, has not

received much attention. To our knowledge, this is limited to Wynters and Mitchell

(1993), who consider rendezvous of a pair of agents amidst obstacles with respect

to the minimax and minsum distance constraints. We now begin a discussion of

prior work pertaining to calculation of optimal locations with respect to these two

constraints in the absence of obstacles.

Work on minimax distance criterion has been reported as early as 1960s in

the context of location theory (Francis (1967)). The usefulness of the minimax

criterion in defence applications has been addressed by Isaacs (1964) where the

advantage of minimizing the maximum distance (as opposed to the total or average

distance) to trouble spots to save time in the context of deployment of airborne

soldiers is discussed. Elzinga and Hearn (1972) present a finite solution procedure

for the minimax problem for Euclidean and rectilinear distance measures based

15

on geometric arguments. Drezner and Wesolowsky (1980) generalize this result

by considering the lp metric (where p ≥ 1) and establish empirically the efficiency

of their procedure. An O(n(log n)3(log log n)2) algorithm has been reported in

Megiddo (1983) to find a point in two dimensions that minimizes the maximum

weighted distance to a point from a set of n given points.

The minsum distance constraint, however, can be traced back to the seven-

teenth century, when Torricelli devised a construction method to compute the

point that minimizes the sum of distances to three other points (Courant and

Robbins (1941)). This point has since then been referred to as the Fermat point,

crediting the French mathematician who first posed the problem. When four loca-

tions are involved, the point is referred to as the Fagnano point (Melzak (1974)).

When the number of agent locations exceeds four, the sum of distances is not

expressible as an algebraic expression involving radicals since its computation

involves finding zeros of higher order (> 5) polynomials. Consequently, an itera-

tive procedure is utilized to compute the optimal location (Cockayne and Melzak

(1969)). The problem involving more than three locations was first studied by

Weber in the beginning of the twentieth century and the problem has since then

been referred to as the “Fermat-Weber problem”. Weiszfeld (1936) showed the

convergence of an iterative scheme to the optimal location for the Fermat-Weber

problem.

In each of these works, the paths from agent locations to the rendezvous point

are treated as straight line segments joining these locations. In the presence of

obstacles, however, the agents take turns at various vertices of obstacles before

arriving at the rendezvous point. As a result, it is a challenge to define the

minimax and minsum distance criteria via algebraic expressions when obstacles

are involved. We address each of these concerns in Chapters 3 and 4 and present

efficient geometric algorithms to compute optimal rendezvous locations in the

presence of an arbitrary number of obstacles. Further, we discuss implementation

of rendezvous via mobile robots. We now move on to the literature that deals with

adversaries (or intelligent obstacles).

16

2.4 Rendezvous of a pair of agents in the pres-

ence of an intelligent obstacle

An intelligent obstacle (also referred to as an adversary) introduces the notion of

conflict. Adversaries and their impact on security have been studied in industrial

settings (see Long and Wu (2006), Yuan et al. (2016)). A well-studied problem in

mobile robotics pertaining to adversaries is search and pursuit-evasion (see Chung

et al. (2011)). Pursuit-evasion typically involves an evader attacking a static target

while the pursuer acts to defend the target. An extension to pursuit-evasion

is where two players attempt to herd under the influence of an attacker. The

rendezvous of two ‘friend’ agents, that is of importance in this thesis, is somewhat

similar to the notion of herding, discussed by Scott and Leonard (2013).

Defending a moving vehicle from an attack has been the subject of active

research since the early 1960s (Isaacs (1965), Boyell (1976)). Adversaries act like

obstacles to the movement of agents and it is desirable to identify regions of ‘safety’

where the rendezvous is not interrupted by the adversary. A geometric approach

to an Active Target Defense Differential Game (ATDDG) is presented in Garcia

et al. (2018) while the same is utilized in computing (i) dominance regions for

capture and (ii) safe regions for rendezvous in Oyler et al. (2016). Contrary to the

assumptions in these works, we do not assume any communication between the

adversary and the friendly agents. Instead, we equip the adversary with a vision

sensor that is used to identify and locate the agent.

Vision-based target tracking has also been well-explored in the past (see Luo

and Chang (2012)). A target tracking strategy based on game theory has been

proposed in Zhou et al. (2014). A cell decomposition-based approach to visibility-

based pursuit evasion is presented in Bhattacharya (2011). An enhancement to

this work considers visibility-based target tracking with a mobile observer and

is reported in Zou and Bhattacharya (2016). A computational geometry-based

approach to the lion and man game with visibility constraints has been reported

in Noori and Isler (2014). Although visibility-based pursuit-evasion studies have

been reported, a detailed geometric framework for determining rescue/capture,

when the adversary is equipped only with a vision-based sensor, does not appear

17

to be available.

2.5 Time Optimal Rendezvous in multi-agent sys-

tems

Imposing constraints on time for rendezvous takes into account the speeds of vari-

ous agents in addition to the distance travelled prior to rendezvous. Notarstefano

and Bullo (2006) present a solution to achieve rendezvous in minimum time for

a network of first order agents with bounded inputs. A decentralized algorithm

to calculate arrival angles at a precomputed time optimal rendezvous point, for

Dubin’s vehicles, is reported in Bhatia and Frazzoli (2008). Brown et al. (2011) dis-

cuss algorithms to compute minimum time rendezvous points for multiple agents

via level set methods. Recently, new techniques to compute optimal locations with

velocity constraints (see Chunhe and Zongji (2014)) and power constraints (see

Setter and Egerstedt (2014)) have been reported.

However, obstacles have not been considered in any of these formulations.

Kunwar et al. (2005) discuss rendezvous with moving objects in dynamic cluttered

environments. However, the discussion is limited to a single autonomous vehicle

attempting a rendezvous with moving targets.

2.6 Summary

This chapter provides a survey of the literature on various problems introduced

in Chapter 1. In the next chapter, we handle rendezvous with minimax distance

constraint and present hardware-efficient algorithm for computing the optimal

location.

18

CHAPTER 3

GATHERING OF WHEELED MOBILE

ROBOTS WITH COLLISION AVOIDANCE

AND A MINIMAX DISTANCE CRITERION

In this chapter, we consider rendezvous of hardware agents and in particular,

autonomous mobile robots. Mobile robots operate with power constraints and it

is desirable for each robotic agent to operate for several hours without recharging

(of the batteries on-board). This goal can be related to the travel distance for

each robot before they meet (to exhange supplies). We thus define a measure

for distance that takes into account the constraints on resources (power, area) for

each of the agents in a multi-agent scenario.

An intuitive approach to define such a distance measure is based on ensur-

ing that the difference between the distances travelled by any two agents (before

meeting) is small. In other words, a point that minimizes the maximum of dis-

tances travelled by all the agents prior to rendezvous can be treated as an optimal

location (for rendezvous). Such a measure is referred to as the minimax distance

constraint and is the primary constraint for rendezvous throughout this chapter.

We begin with a formal definition of the problem and then present efficient algo-

rithms to compute such optimal locations while the environment is populated with

obstacles. Another contribution of the work presented is efficient hardware realiza-

tion of the proposed algorithms. We depict an implementation of the rendezvous

point computation on small robots, each equipped with only a microcontroller.

The memory on the microcontroller is shown to be adequate for implementation

of the proposed algorithms. No external storage is required. Further, position

information and distance (to obstacle) information are obtained using simple and

low-cost units. This work has been reported in Vundurthy and Sridharan (2019).

3.1 Assumptions and Terminology

This chapter deals with computation of an optimal location in the plane that

addresses the minimax distance criterion. We thus have the following definition.

Definition 1 The location that minimizes the maximum Euclidean distance from

each of the agent locations, in the absence of any obstacles, is defined as the

Minimax point and is denoted by PM . �

PM(x, y) = min{max
1≤i≤k

√
(x− xi)2 + (y − yi)2} (3.1)

For k agents located at {P1(x1, y1), P2(x2, y2), · · · , Pk(xk, yk)}, PM is given by

Eq. (3.1) and corresponds to an environment without obstacles. When obstacles

are introduced, however, the calculation of the point that minimizes the maximum

distance is more complex since the distances are now computed as the lengths of

the shortest paths between two locations. We refer to this point as the rendezvous

point and denote it by PG.

Definition 2 Rendezvous point PG for k agents amidst n static obstacles is de-

fined as the point external to all obstacles attaining the minimum of maximum of

distances computed from k agent locations (to various points in the plane). �

The development of an efficient algorithm for computing PG requires an ap-

propriate model of the obstacles for collision avoidance. We assume that the area

used by machines, furniture etc. can be represented by polygons of arbitrary shape

(they could be non-convex). When the obstacles are non-polygonal, however, var-

ious approximation techniques exist that can be utilized to obtain a closely bound

polygon. One of the earliest works that achieves this is due to Rosin (1997). We

assume further that our agents are small and each can be represented by a point

mass (similar to assumptions in Vicsek et al. (1995)).

The development of efficient algorithms also requires the notions of visibility

and last turn since agents need to avoid collisions with the interior of the obstacles.

Two arbitrary points, T1 and T2, are visible to each other, if the line segment

20

P1 P2

P

PG

Q1

Q2

Q3
Q4

Q5

Q6

Q7

PM

R1R2
S

S

Figure 3.1: Rendezvous of a pair of agents (P1 and P2) in the presence of a non-
convex polygonal obstacle

joining T1 and T2 does not intersect the interior of any obstacle. For instance in

Fig. 3.1, P1 is visible to Q1 but not to P2. The last turn location is defined as the

point (vertex) that an agent reaches before becoming visible to the destination

point. The last turn location for agent P2 (to reach P) in Fig. 3.1 is Q1 while the

last turn location for agent P1 to reach PG is Q7.

In the presence of static polygonal obstacles, agents move from one obstacle

vertex to another before arriving at the rendezvous point PG. The distance trav-

elled by an agent from its initial location to an intermediate location (for instance,

a vertex of an obstacle) may be thought of as the weight on the agent at that in-

termediate location. For instance, in Fig. 3.1, the weight on agent P1 at vertex

Q6 is the distance travelled by P1 to reach Q6 (which is (P1Q7 + Q7Q6)). Using

the notion of weights, we can define a weighted minimax point (denoted by PW
M)

as per (3.2).

PW
M (x, y) = min{max

1≤i≤k
(
√

(x− xi)2 + (y − yi)2 + di)} (3.2)

The definition in (3.2) assumes k agents with weights given by di, i ∈ {1, 2, · · · , k}.

PW
M is later used to compute PG in section 3.4.2. We begin with the computation

of rendezvous point for two agents amidst n polygonal obstacles. Fig. 3.1 illus-

trates the location of minimax (PM) and rendezvous points (PG) for two agents

in the presence of a non-convex polygonal obstacle. We note that, while there

21

are two paths between the agent locations, PG corresponds to the mid-point of

the shortest of the two paths. We present and formally prove this result in the

following section and present a hardware-efficient algorithm to compute the same.

3.2 Rendezvous Point for a Pair of Agents amidst

n Polygonal Obstacles

In this section, we consider two agents (located at P1 and P2) and n obstacles

(each with a total of c vertices where c is a constant) and present an O(n log n)

time algorithm to compute PG. The key ideas are as follows. The rendezvous

point PG for a pair of agents is shown in Fig. 3.1. Let the curve S be the locus of

all points that are equidistant to P1 and P2. Thus, on one side of S lies region R1

(shown in blue), that is the collection of all points in the plane farthest from P1.

Therefore, the maximum of distances from P1 and P2 to any point in R1 would

be the distance from P1. Minimizing this over R1 brings one back to the curve

S. The same applies to region R2 (shown in red). The location of rendezvous

point PG can thus be narrowed down to curve S. Lemma 1 extends this idea to n

obstacles.

Lemma 1 The rendezvous point PG for two agents moving amidst n polygonal

obstacles is the point on the shortest path (from one agent to another) that is

equidistant from both agents. �

Proof: This can be established as an extension of the no obstacles case where PM

corresponds to the mid-point. When obstacles are present, the path joining the

two agents need not be just as one piece: it is, in general, a collection of segments.

The total length of the collection is of interest and the location corresponding

to half this length determines a potential rendezvous point. Since several such

collections can exist, we choose the one that has the smallest total length which

corresponds to the shortest path. The midpoint of the shortest path corresponds

to PG. Q.E.D.

22

We now present Algorithm Rendezvous point pair that uses Lemma 1 to

compute the rendezvous point for two agents amidst n polygonal obstacles.

Algorithm Rendezvous point pair

INPUT: Two distinct, initial locations of the agents, denoted by P1, P2. n non-

intersecting polygonal obstacles with c vertices each, labeled (O1, O2, · · · , On).

OUTPUT: Rendezvous point PG

Step 1: Compute the shortest path (SP) from P1 to P2 amidst n polygonal

obstacles.

Step 2: Compute the mid point of SP while moving from one vertex to the other

starting from P1. Output this midpoint as the rendezvous point PG. �

Theorem 1 The time complexity of Algorithm Rendezvous point pair is

O(n log n). �

Proof: Step 1 of the algorithm computes the shortest path from P1 to P2 amidst

n obstacles with c vertices each (where c is a constant) in O(n log n) time based

on the approach in Hershberger and Suri (1999). Given the shortest path, Step 2

takes O(n) time to compute the point equidistant from P1 and P2 (since the O(n)

vertices along the shortest path are available from Step 1 and the length of each

segment can be obtained in constant time). Thus, the overall time complexity of

Algorithm Rendezvous point pair is O(n log n). Q.E.D.

Fig. 3.2 illustrates the rendezvous point PG for two agents located at P1 and P2

amidst three obstacles with four vertices each. Curve S is the collection of points

equidistant from the two agents P1 and P2. Rendezvous point PG is the point of

intersection of this curve S and the shortest path from P1 to P2. It is worth noting

that Algorithm Rendezvous point pair computes this rendezvous point PG

without the need to compute the curve S, thus saving on computational time. We

have so far assumed only a pair of agents. We next consider generalization to k

agents moving amidst n polygonal obstacles. To this end, we begin with compu-

tation of the weighted minimax point for k agents in the absence of obstacles.

23

PG

P1 P2

Obstacle

O
bs
ta
cl
e

O
bs
ta
cl
e

Q1

Q2

S

S

Figure 3.2: Rendezvous point (PG) for two agents in the presence of three polyg-
onal obstacles

3.3 Computation of Weighted Minimax Point PW
M

For two agents moving amidst obstacles, the calculation of PG has been studied

by dividing the plane into two regions, each being farthest from one of the two

agents. As the number of agents increases to k, the division of the plane into k

regions becomes complex. We therefore develop an alternate procedure based on

the notion of weighted minimax point (PW
M), defined in section 3.1, to compute

PG. We begin with the computation of PW
M for two and three agents and extend

the result to k agents. The minimax point PM can be obtained, if necessary, by

computing the weighted minimax point PW
M with zero weights at all locations.

3.3.1 Weighted Minimax Point for Two and Three Agents

Lemma 2 For two agent locations P1 and P2 with weights d1 and d2 respectively,

the weighted minimax point PW
M is given by Eq. (3.3).

PW
M =

Pi, if di ≥ (l12 + dj)

P12 otherwise

(3.3)

for i, j ∈ {1, 2} with i 6= j. l12 is the Euclidean length of the line segment P1P2

and

P12 =
l12(P1 + P2) + (d1 − d2)(P1 − P2)

2× l12
(3.4)

24

�

Proof: Let P be an arbitrary point on line segment P1P2 that divides it in the

ratio r : (l12 − r), 0 ≤ r ≤ l12. Thus, the distances from P1 and P2 to P are given

by

dPP1 = d1 + r

dPP2 = d2 + l12 − r
(3.5)

Without loss of generality, let the first condition in Eq. (3.3) be expressed as

d1 ≥ (l12 + d2). For any non-negative constant z, we thus have

d1 − z = l12 + d2

⇒ dPP1 = d1 + r

⇒ dPP2 = d1 − z − r

(3.6)

Thus, max({dPP1 ,dPP2}) is dPP1 . The minimum for dPP1 occurs when r = 0 which

indicates that the minimax point is P1. Similarly, for the condition d2 ≥ (l12 +d1),

P2 is the minimax point. This proves the first condition.

The minimax point in the absence of the constraint described in Eq. (3.6), is

the point on line segment P1P2 that is equidistant from P1 and P2. We have from

Eq. (3.5),

dPP1 = dPP2

⇒ d1 + r = d2 + l12 − r

⇒ r =
l12 + (d2 − d1)

2

(3.7)

The expression for P12 (Eq. (3.4)) then follows from the section formula which

divides line segment P1P2 in the ratio (r : l12 − r) where r is given by Eq. (3.7).

Q.E.D.

We now present Lemma 3 to compute PW
M for three agents with arbitrary

weights at their locations. We denote by lij the length of line segment PiPj.

Further, Pij is the weighted minimax point of agent locations Pi and Pj (with

weights di, dj) computed using Lemma 2. dij is the weight computed at Pij. The

25

length of line segment from Pij to Pk is denoted by ijlk. It is worth noting that

the locus of points equidistant from two agent locations with associated weights

is a branch of a hyperbola (explained further in proof of Lemma 3).

Lemma 3 For three agent locations P1, P2 and P3 with weights d1, d2 and d3

respectively, the weighted minimax point PW
M is given by

PW
M =


Pi, if di ≥ (lij + dj) & di ≥ (lki + dk)

Pij, if dij ≥ (ijlk + dk)

P123 otherwise

(3.8)

for i, j, k ∈ {1, 2, 3} with i 6= j 6= k. P123 is the point of intersection of the three

branches of hyperbolas constructed on the three sides with their respective weights.

�

Proof: The first two conditions follow from the proof of Lemma 2. When these

two conditions do not apply, the minimax point is the point equidistant to the

three agents with their corresponding weights. The locus of points (P) equidistant

to two agents P1, P2 (with weights d1, d2) is a hyperbola as shown in Eq. (3.9).

PP1 + d1 = PP2 + d2

⇒ PP1 − PP2 = d2 − d1
(3.9)

The point equidistant to the three agents (which corresponds to PW
M) is identical

to the point of intersection of the three branches of the hyperbolas constructed on

the three sides formed by initial locations of agents. Q.E.D.

Figures 3.3 (a) and 3.3 (b) illustrate the two cases in Lemma 2 for computing

the weighted minimax point for two agents with non-zero weights. Fig. 3.3 (c)

illustrates the last case in Lemma 3 and various terms used in computing the

same.

We now present numerical illustrations to compute the weighted minimax point

PW
M as given by Lemmas 2 and 3. In Fig. 3.3 (a), P1(0, 0) and P2(10, 0) describe

26

(b) (c)

P1(0,0)

P2(9,3)

P3(4,9)

P12

P23
P31

P1(0,0) P2(10,0)

P123

d12=9
d1=1

d2=3

d3=5

d1=2

d2=6

PM(7,0)

l12
23l1

l12

P1(0,0) P2(10,0)

d1=14 d2=2

PM(0,0)

l12=10

(a)

(d1>l12+d2)

W

W

Figure 3.3: Weighted Minimax point PW
M for two and three agent locations with

non-zero weights

locations of agents with weights d1 and d2 given by 14 and 2 respectively. The

length of line segment P1P2, namely l12, is 10 units. Since d1 > l12 + d2, it follows

from Lemma 2 that the weighted minimax point PW
M is the agent location P1.

In Fig. 3.3 (b), agents are located at P1(0, 0) and P2(10, 0) with weights d1

and d2 given by 2 and 6 respectively. With these values, we have d1 < l12 +d2 and

d2 < l12 + d1. It thus follows from Lemma 2 that the weighted minimax point PW
M

is P12. For computation of P12, we treat agent locations P1 and P2 as vectors and

all other entities (d1, d2, l12) as scalars, shown in Eq. (3.10).

P12 =
l12(P1 + P2) + (d1 − d2)(P1 − P2)

2× l12

⇒ P12 =

10× (

0

0

 +

10

0

) + (2− 6)× (

0

0

−
10

0

)

2× 10

⇒ PW
M = P12 =

7

0


(3.10)

In Fig. 3.3(c), we illustrate the computation of weighted minimax point for three

agent locations P1(0, 0), P2(9, 3), P3(4, 9) with weights d1, d2 and d3 given by 1, 3

and 5 respectively. Since di < (lij + dj) & di < (lki + dk) ∀ i, j, k ∈ {1, 2, 3} with

i 6= j 6= k, the first condition in Eq. (3.8) is invalid. Similar computations show

that the second condition in Eq. (3.8) is also invalid. Thus, the weighted minimax

point PW
M is P123.

27

Locus of points equidistant from two agent locations with their associated

weights is a branch of the hyperbola as given by Eq. (3.9). P123 is the point

of intersection of three such hyperbolas constructed on the three pairs of agent

locations (P1, P2), (P2, P3) and (P3, P1) as shown in Fig. 3.3(c).

For instance, consider the agent pair P1(0, 0) and P2(9, 3) with their corre-

sponding weights d1 and d2 given by 1 and 3 respectively. Let P (x, y) be an

arbitrary point equidistant to P1 and P2 with weights d1 and d2 respectively. The

locus of P (branch of a hyperbola) passes through the point P12(5.45, 1.81) and is

given by Eq. (3.11) as shown in Fig. 3.3(c).

√
(x− 0)2 + (y − 0)2 + 1 =

√
(x− 9)2 + (y − 3)2 + 3

⇒ y =
2
√

43(2x2 − 18x+ 43)− 27x+ 129

5

(3.11)

Similar computations on the remaining two agent pairs lead to two additional

hyperbolas that pass through points P23(5.86, 6.77) and P31(2.81, 6.33) as given

by Eq. (3.12).

y =

√
57(4x2 − 52x+ 201) + 30x− 3

32

y =
36
√

4x2 − 16x+ 81− 72x+ 729

130

(3.12)

The point of intersection of these three branches of hyperbolas is P123(4.48, 5.75)

which is the weighted minimax point PW
M for given agent locations and weights

(Fig. 3.3(c)). An efficient method to implement these computations on a micro-

controller is presented in section 3.5.1.

3.3.2 Weighted Minimax Point for k Agents

It is worth noting that the conditions in Lemma 3 correspond to cases where either

one or two of the points are sufficient to compute the weighted minimax point.

We now extend the ideas to k agents.

Lemma 4 The weighted minimax point of k agents is identical to the weighted

minimax point of three agents (among k agents) calculated using Lemma 3. �

Proof: When the weights on all the agents are equal, it follows from Rademacher

28

and Toeplitz (1957) that three points suffice to determine the weighted minimax

point. If the weights are unequal, the last case in Lemma 3 holds. When there

are more than three agents, the hyperbolas do not intersect (in general) at a sin-

gle point. From the properties of a polygon, it follows that a maximum of three

hyperbolas can intersect at a single point, ignoring redundancy. The agents cor-

responding to these three hyperbolas determine the triplet that constitutes the

weighted minimax point. Q.E.D.

The remaining k − 3 points satisfy the following condition:

dPM
≥ di + liPM

(3.13)

where dPM
is the weight at the minimax location, di is the weight at the ith location

and liPM
is the length of the line segment joining Pi and PM . Thus, these points

do not play a role in computing the minimax point. We now present Algorithm

Minimax point weighted to compute the weighted minimax point for k agents,

using Lemmas 2, 3 and 4.

Algorithm Minimax point weighted

INPUT: k distinct initial locations of the agents denoted by P1, P2, · · · , Pk.

Weights at these k locations are denoted by the set D = {d1, d2, · · · , dk}.

OUTPUT: Weighted minimax point, PW
M

Step 1: Choose the largest, second largest and third largest values from D and

denote by (da, db, dc) respectively where a, b, c ∈ {1, 2, · · · , k} and a 6= b 6= c.

Step 2: Compute QM as the weighted minimax point of three agent locations

Pa, Pb, Pc with weights (da, db, dc) using Lemma 3. Let dm be the corresponding

weight at QM .

Step 3: Return QM as the weighted minimax point PW
M if Eq. (3.14) holds (where

lim represents the Euclidean distance between Pi and QMand Stop.

dm ≥ lim + di ∀ i ∈ {1, 2, · · · , k} (3.14)

29

Otherwise, choose an agent location and its weight Pd, dd (where d ∈ {1, 2, · · · , k})

that does not satisfy Eq. (3.14) and proceed to Step 4.

Step 4: Compute weighted minimax points for the three combinations (Pa, Pb, Pd),

(Pa, Pc, Pd) and (Pb, Pc, Pd) using Lemma 3. Denote these points as Qx, Qy, Qz

and their weights as dx, dy, dz respectively. Replace dm with the maximum of

dx, dy, dz and QM with its corresponding minimax point. Replace (Pa, Pb, Pc) with

the corresponding combination of dm and proceed to Step 3. �

Fig. 3.4 illustrates the algorithm for five (k = 5) agent locations. Step 1 picks

three agent locations P1, P2, P4 with highest weights (Fig. 3.4 (a)) and denotes

them as (Pa, Pb, Pc). Step 2 computes the weighted minimax point (QM) and its

weight (dm) for (Pa, Pb, Pc) using Lemma 3. QM is the point of intersection of

three branches of hyperbolas constructed on each side of 4PaPbPc (Fig. 3.4 (a)).

Step 3 then uses Eq. (3.14) to check if QM minimizes the maximum of dis-

tances to all agent locations. Since P3 does not satisfy Eq. (3.14), P3 is renamed

as Pd (Fig. 3.4 (b)). Step 4 computes the weighted minimax point for the three

combinations (Pa, Pb, Pd), (Pa, Pc, Pd) and (Pb, Pc, Pd) and identifies that the com-

bination with highest weight is (Pa, Pb, Pd). Fig. 3.4 (b) illustrates Qx as the point

of intersection of the three branches of hyperbolas for 4PaPbPd. Eq. (3.14) of

Step 3 now reveals that Qx is indeed the weighted minimax point for all agent

locations and is thus the output (PW
M).

W

(a) (b)

P1(1,3)
d1=3

P2(7,2)
d2=4

P3(10,12)
d3=2

P4(3,10)
d4=2

P5(4,7)
d5=0

P1
P2

P3
P4

P5

Pa
Pb

Pc

Pa
Pb

Pc

Pd

QM(5.1,4.9)
dM=7.5

Qx

PM(5.6,6.7)
dM=8.9

QM

Figure 3.4: Illustration of Algorithm Minimax point weighted (a) Steps 1
and 2 (b) Steps 3 and 4

30

The convergence of Algorithm Minimax point weighted follows from the

fact that the distance value dm increases with each iteration. Since there are a finite

number of points (k), the algorithm terminates when dm reaches its maximum

value. The complexity of Algorithm Minimax point weighted is expressed

by Theorem 2.

Theorem 2 Algorithm Minimax point weighted takes O(k2) time where k

is the number of agents. �

Proof: Step 1 computes the first, second and third maximum in O(k) time. Step

2 uses Lemma 3 to compute PW
M in constant time. Step 3 verifies the condition

in Eq. (3.14) for all k agents and thus takes O(k) time. Step 4 computes three

minimax points and then repeats Step 3 at most k times, thus taking O(k2) time.

Hence, the overall complexity is O(k2). Q.E.D.

3.4 Computation of the Rendezvous Point PG

Algorithm Minimax point weighted presented in section 3.3.2 is used in de-

veloping an efficient algorithm to compute the rendezvous point PG. Polygons

formed from the vertices of the obstacles and the agent locations contribute to the

location of PG. In particular, the rendezvous point turns out to be the weighted

minimax point of one of the polygons constructed from the obstacle vertices and

agent locations (an outline of the proof of this is part of Lemma 5).

However, a direct algorithm based on this idea has high computational com-

plexity. This is in view of the fact that for k agents moving amidst n polygonal

obstacles with c vertices each, we have up to cn+kPk polygons to consider (and

shortest paths from the agents to the vertices of these polygons). We first present

a few key ideas that bring down the number of polygons to be considered from

cn+kPk to a maximum of c+kPk.

31

3.4.1 Key Results in computing PG

Fig. 3.5 illustrates the rendezvous point for six agents moving amidst three polyg-

onal obstacles (with four vertices each). One of the 4∗3+6P6 combinations is shown

in Fig. 3.5 as the polygon Q1Q2Q3Q4Q5Q6. Weight di (where i ∈ {1, 2, · · · , 6})

at a location Qi, corresponds to the distance travelled by agent Pi from its initial

location to Qi. This can be observed in Fig. 3.5 where d3 (at Q3) is the distance

travelled by agent P3 from its start location to Q3, which is the length of the line

segment P3Q3. The weighted minimax point PW
M of this polygon Q1Q2Q3Q4Q5Q6

has the least maximum of distances value and corresponds to the rendezvous point

PG.

Obstacle

P1 P2

P3

P4
P5

P6

Q1

Q2

Q4
Q5

Q6
Q3

PG

PMd6

d1 d2

d3

d4
d5

Figure 3.5: PG and PM for six agents amidst three polygonal obstacles

The proposed efficient algorithm is based on the following observation. The

point PM , which is the minimax point of k initial locations of agents with zero

weights, is ‘on the same side’ as PG as illustrated in Fig. 3.5. It is worth noting

that PM and PG are both visible to the last turn locations to PM (which are

Q1, Q2, Q3, Q4, Q5, Q6). Thus, by identifying the last turn locations to PM , one

can immediately identify the polygon Q1Q2Q3Q4Q5Q6 whose weighted minimax

point is the rendezvous point PG. Therefore, the search for the rendezvous point

PG can be reduced from multiple polygons to one. This observation is established

formally in Lemma 5.

Lemma 5 Let PM be the minimax point for k agents with zero weights and PG

32

be the rendezvous point amidst n polygonal obstacles. Further, let Q1, Q2, · · · , Qk

be the last turn locations for these k agents attempting to meet (amidst obstacles)

at the minimax point PM .

If PM lies external to all obstacles, the weighted minimax point of these last

turn locations is the rendezvous point PG. �

Proof: Let the maximum of distance values to PM and an arbitrary point (denoted

by P) be rM and rP respectively. It follows from Eq. (3.1) that the maximum of

distances is lowest for PM compared to any arbitrary point in the plane (P). We

thus have,

rM ≤ rP (3.15)

Since the distance between two points generally increases with introduction of

obstacles, we have Eq. (3.16).

rM ≤ sM

rP ≤ sP

(3.16)

where the maximum of distances (lengths of the shortest path from agents’ loca-

tions) to PM is sM and to P is sP . Further, consider Q1, Q2, · · · , Qk to be the last

turn locations of agents attempting to gather at PM . Let the weighted minimax

point of Q1, Q2, · · · , Qk be PW
M and the maximum of distances value to PW

M be

sW . In order to prove that PW
M is the rendezvous point PG, it is adequate to show

sW ≤ sP (3.17)

It follows from Eq. (3.2) that the weighted minimax point of the polygon con-

structed using last turn locations has the lower maximum of distances value com-

pared to any other point with same last turn locations. We thus have

sW ≤ sM (3.18)

It follows from Eq. (3.15) that the maximum of distances value to PM (which is rM)

will increase with addition of obstacles (Eq. (3.16)). The only point with lower

maximum of distances value compared to PM would be the weighted minimax

point of its last turn locations as given by Eq. (3.2) and Eq. (3.18).

33

Therefore, the point with lowest maximum of distances value in the presence

of obstacles is the weighted minimax point PW
M which is in turn the rendezvous

point PG as given by Definition 2. We thus have Eq. (3.17). Q.E.D.

3.4.2 Efficient Algorithm to compute the Rendezvous Point

Lemma 5 is useful in developing Algorithm Rendezvous point efficient that

computes the rendezvous point PG for k agents moving amidst n obstacles with c

vertices each.

Algorithm Rendezvous point efficient

INPUT: k distinct, initial locations of the agents denoted by P1, P2, · · · , Pk. n

non-intersecting polygonal obstacles with c vertices each, denoted using the set

O = {O1, O2, · · · , On}.

OUTPUT: Rendezvous point PG.

Step 1: Calculate the minimax point PM of polygon P1P2 · · ·Pk (with zero

weights). Verify if PM is contained in any of the n obstacles. Identify the ob-

stacle (if any) that contains PM , as Oj (where j ∈ {1, 2, · · · , n}) and exclude it

from the set O.

Step 2: Calculate the shortest path for the k agents to reach PM amidst the

obstacles. Denote the last turn locations in the shortest paths before reaching PM

as Q1, Q2, · · · , Qk and the corresponding path lengths as d1, d2, · · · , dk.

Step 3: If Oj is empty, goto Step 4 else goto Step 5.

Step 4: Replace PM with the weighted minimax point (PW
M) of polygonQ1Q2 · · ·Qk

computed with weights d1, d2, · · · , dk using Algorithm Minimax point weighted .

Compute the shortest paths for k agents from initial locations to PM . Identify the

last turn locations to reach PM as R1, R2, · · · , Rk and the distances along shortest

paths to reach them as f1, f2, · · · , fk. Go to Step 6.

Step 5: Replace PM with the rendezvous point of polygon Q1Q2 · · ·Qk computed

with weights d1, d2, · · · , dk and one polygonal obstacle Oj. Include Oj back into

34

the set O and compute the shortest path from initial locations to PM . Denote the

last turn locations as R1, R2, · · · , Rk and the corresponding lengths of shortest

paths as f1, f2, · · · , fk.

Step 6: If Ri = Qi ∀ i ∈ {1, 2, · · · , k}, output PM as the rendezvous point PG and

Stop. Else, replace Qi with Ri and di with fi ∀ i ∈ {1, 2, · · · , k}. Exclude Oj (if

any) from the set O and return to Step 3. �

The correctness of this algorithm follows from Lemma 5. Algorithm Ren-

dezvous point efficient is illustrated in Fig. 3.5. Steps 1 and 2 compute the

minimax point PM and paths from agents’ initial locations. Since PM is not con-

tained in any obstacle (Step 3), Step 4 computes the weighted minimax point (PG

in Fig. 3.5) of last turn locations Q1, Q2, · · · , Q6. Recomputing shortest paths to

PG does not affect the last turn locations (Step 6). Thus weighted minimax point

computed in Step 4 is output as the rendezvous point PG. The convergence of this

algorithm follows from the fact that there are only a finite number of polygonal

obstacles to be considered in computing the rendezvous point.

Theorem 3 The asymptotic time complexity of Algorithm Rendezvous point

efficient is O(k2 + kn log n) where n is the number of obstacles with c vertices

each and k is the number of agents. �

Proof: Step 1 takes O(k2) time for computing the minimax point as given by

Theorem 2. It takes additional O(n) time for checking if PM lies in any of the

n obstacles. Computation of shortest paths to PM from k agents in Step 2 takes

O(kn log n) as given by Hershberger and Suri (1999). Computation of minimax

point in Steps 4 and 5 once again take O(k2) time and the corresponding short-

est paths take O(kn log n) time. Step 6 returns the rendezvous point PG or re-

assigns variables for further computation. Thus, the overall time complexity is

O(k2 + kn log n). Q.E.D.

In addition to handling k agents amidst n obstacles, Algorithm Rendezvous

point efficient is equipped to handle cases where the minimax point is contained

in one of the obstacle or when the rendezvous point coincides with an agent lo-

cation. In the former case, we show that the computation can be performed by

35

ignoring the obstacle and computing the rendezvous point and its respective last

turn locations. The final rendezvous point in the presence of the ignored obstacle

can be computed by handling all the c+kPk polygons with respect to the ignored

obstacle and k agent locations. This corresponds to Step 5 of the algorithm and an

illustration is presented via Fig. 3.6(a). It is worth noting that such a technique

does not affect the overall complexity of the algorithm.

(a) Pm lies inside an obstacle (b) PG coincides with the location of P4

Figure 3.6: Illustration of special cases in computation of PG

Another special case is illustrated in Fig. 3.6(b). Here, the rendezvous point

PG coincides with initial location of one of the agents (P4). As a result, while

agent P4 remains at PG, the remaining agents follow the shortest path to PG.

3.4.3 Communication among Agents for rendezvous at PG

For two agents and n polygonal obstacles, Lemma 1 computes the rendezvous

point PG via the shortest path between agent locations. However, the shortest

path need not be unique. So, in principle, there can be multiple choices for the

rendezvous point. To ensure that the agents achieve rendezvous, we make use of

communication among the agents and present the following Remark 1.

Remark 1 We ensure that P1 first communicates its location to P2. P2 then com-

putes the rendezvous point via Algorithm Rendezvous point pair and trans-

mits the same back to P1 thus ensuring a unique location for rendezvous. �

In the implementation, this is accomplished by an array which stores (and

updates) the shortest path. It is worth noting that this approach obviates the

36

need for a central controller. We now discuss an extension of this protocol to a

multi-agent system via Remark 2.

Remark 2 The agents at (P1, P2, · · · , Pk−1) transmit their initial locations to the

agent at Pk. The latter computes the rendezvous point PG and transmits it back

to the agents at (P1, P2, · · · , Pk−1). �

The communication is implemented as follows. The agents encode their loca-

tion and index number in the form of a 10-digit constant. The first four digits indi-

cate the X-coordinate of the location while the next four indicate the Y-coordinate

(in centimetres). The implementation currently allows 99 agents and hence the

last two digits indicate the agent’s index number ranging from 01 to 99. Index

number 00 is reserved for the rendezvous point transmitted by the agent at Pk. For

example, the encoded information transmitted by agent P1 located at (3142, 30)

to Pk is of the form 〈3142003001〉. Similarly, the encoded form of a rendezvous

point corresponding to (2718, 43) sent by Pk to other agents is 〈2718004300〉. Since

this approach involves transmission of k values (locations of k− 1 agents and one

rendezvous point) each 10 digit in size, the communication complexity is O(k),

computed with the help of Abelson (1978) and Yao (1979).

Remark 3 Algorithm Rendezvous point efficient stops with calculation of

the rendezvous point PG. The task of computing the shortest path to PG is left to

the individual agents which can perform this in parallel. This has the advantage of

keeping the time complexity of the algorithm low while at the same time, reducing

the information to be transmitted (by Pk) to each of the k − 1 agents. �

3.4.4 Enhancement to handle Collisions among Agents

In an industrial environment involving multiple hardware agents, one (moving)

agent could itself be an obstacle to another. The algorithms presented so far

handle k agents moving amidst obstacles with distance optimization as the goal.

In this section, we answer the following question: Can the paths generated for each

agent avoiding collision with the interiors of the obstacles be used as such when

handling collisions among agents on their paths to PG?

37

We present an algorithm for path following that prevents collision among agents

and enables retaining the location (of PG) computed with the polygonal obstacles

using Algorithm Rendezvous point efficient . It is assumed that the agents

are equipped with distance sensors and communication modules. As indicated

in Remark 3, the agents calculate the shortest path (in parallel) to PG amidst

obstacles. Fellow agents in the path of an agent to PG are detected via the distance

sensor.

Every agent that encounters an obstacle (a fellow agent) broadcasts its current

location and receives the locations of similarly obstructed fellow agents. The

agents use this information to identify if they are obstructing each other. In such

a scenario, the agent with the highest index number proceeds further while the

other agents wait for their turn.

Algorithm Path Following

INPUT: Initial locations of all agents and obstacles. Rendezvous point PG and

paths of various agents to PG. Information from distance sensor on each agent.

OUTPUT: All agents gather at PG

Step 1: Translate each agent along its corresponding path to PG until the distance

sensor on an agent (say Pi) detects an obstacle. If all agents arrive at PG, Stop.

Step 2: Compare the location of detected obstacle with the already stored infor-

mation on static obstacles. In case of a match, ignore the obstacle and return to

Step 1. Else proceed to Step 3.

Step 3: Broadcast the current location of the agent (Pi) along with its index

number (i) to fellow agents and wait for reception of a similar message from a

fellow agent.

Step 4: If Pi does not receive a reply, proceed to Step 6. Else, proceed to Step

5 with the index numbers of all the obstructed fellow agents.

Step 5: If the index i is greatest among all the obstructed agents, conclude that

agent Pi should proceed further and return to Step 1. Else proceed to Step 6.

Step 6: Stop the current agent (Pi) and monitor distance sensor readings. If the

sensor continues to detect an obstacle, return to Step 3. Else return to Step 1.

38

�

Remark 4 The choice to stop momentarily is adopted so that the distance crite-

rion and therefore the energy considerations are met. Other approaches to handle

collisions among agents, in general, lead to greater travel distance for one or more

agents. �

3.5 Implementation Aspects for rendezvous of

Mobile Robots

In this section, we present the details of an efficient hardware realization of the

algorithms on small robots that act as autonomous agents. The hardware on the

systems is small so as to keep cost, weight and power consumption low. Fig. 3.7(a)

illustrates various components involved in the mobile robot setup used in this

thesis. Each robot is equipped with an 8-bit, 20 MHz ATmega328P microcontroller

that executes the algorithms (some numerical computation aspects are presented

in section 3.5.1). Further, position information is gathered via two MOC7811

sensors on each robot. These are inexpensive and adequate for small agents. The

robots are also equipped with an ultrasonic sensor for detecting fellow agents

(ultrasonic sensors are simple, low-cost and lightweight). The ultrasonic sensors

are mounted on a servo motor that rotate to increase the field of view of the

sensors. The entire arrangement is powered by a 12V, 1.3AH sealed maintenance-

free battery. The communication among agents is realized with the help of Xbee-

PRO RF modules. These units are low cost and low power wireless sensor networks

operating at 2.4 GHz with a transmission range of up to 90m. Fig. 3.7(b) captures

the interconnections between various components.

These robots have been tested against UMBmark experiments, discussed in

Borenstein and Feng (1996). Fig. 3.8(a) presents the final location of the robot

after tracking a clockwise and counter-clockwise square path starting and ending

at the origin. The final measure of odometric accuracy for systematic errors, as

defined by Borenstein and Feng (1996), is 18.78 cm.

Since a differential drive robot rotates around one of its wheels, we shift the

39

(a) The mobile robot (all the robots have the same structure) (b) Interconnections

Figure 3.7: Mobile robot and schematic of interconnections between various hard-
ware components

(a) Calibration of the robots (b) Parameters for localization

Figure 3.8: Characteristics of mobile robots used

origin to its left wheel and use the following Algorithm Localize Robot to

calculate the current location of the robot based on the encoder readings. The

mechanical structure of the robot influences the angle of rotation and the distance

travelled. We denote the number of encoder slits as p, the diameter of robot’s

wheel a d and the length between two wheels as l (Fig. 3.8(b)).

Algorithm Localize Robot

INPUT: Initial position (xi, yi), initial orientation θ, encoder count during rota-

tion qr, encoder count during translation qt

OUTPUT: Current position (xf , yf) and orientation β

Step 1: Calculate the angle of rotation ‘α’ and distance translated ‘r’ using

α = πdqr
pl
, r = πdqt

p
.

Step 2: The current orientation β and position (xf , yf) can then be computed

40

using β = α + θ; (xf , yf) = (xi + r ∗ cos(β), yi + r ∗ sin(β))

Step 3: Update initial position (xi, yi) and initial orientation θ with (xf , yf) and β

respectively. Reset the encoder readings qr and qt and output the current location

(xf , yf) and the current orientation (β). �

We now discuss the adaptation of efficient algorithms for the computation of

PG to the presented mobile robot setup.

3.5.1 Numerical Aspects in Implementation of the Algo-

rithms on Resource-Constrained Platforms

The proposed algorithms involve symbolic computation to arrive at the rendezvous

point PG. This can be observed in Lemma 3 where the minimax point is found by

solving two or more second degree equations in two variables. The ATmega328P

microcontroller supports 32KB of Flash Memory, 2KB SRAM and 1KB EEPROM.

Assuming 4 bytes of storage for each of the x and y coordinates, a maximum of

256 vertices can be handled by the microcontroller simultaneously. Since mi-

crocontrollers are not equipped to perform symbolic computation, we develop a

numerical procedure to solve the second degree equations in two variables.

The last case of Lemma 3 gives the minimax point as the point of intersection

of three hyperbolas as shown earlier in Fig. 3.3 (c). The point of intersection of

any two curves (denoted by L1 and L2) is the point at which both curves have

a function value equal to 0. Further, if one curve (for example, L1) is sampled

at a fixed value as shown in Fig. 3.9, it gives a set of points (denoted by Si ∀

i ∈ {1, 2, · · · ,m}, m ∈ Z+) on the curve L1. The values of these points (Si) when

substituted in the curve L2 determine their proximity to the point of intersection.

The point in Si with the substituted value closest to zero is the best approximation

of the point of intersection.

The selection of sampling distance depends on (i) storage space of the micro-

controller and (ii) size of the robots. The 32KB flash memory of ATmega328P

allows for a maximum of 4096 points. If the points under consideration range

a maximum of 10m on X and Y axes, the allowable sampling distance is (10×3
4096

)

41

PM(45,57)

P1(0,0)

P2(90,30)

P3(40,90)

d1=10

d2=30

d3=50

P12

P23P31

L1

L2

L3

S12(30,43)

S13(33,44)

Figure 3.9: Numerical aspects in implementation of the algorithms

which is 0.7cm. However, the (robotic) agents used in the experiments have an

actual resolution of only 3cm. We thus have a sampling distance of 3cm for all

the experiments conducted in the following section.

Fig. 3.9 illustrates this procedure for the locations and weights given. The

three hyperbolas L1, L2 and L3 are converted into collection of points with a

uniform separation of 3cm on the X-axis. Two sampled points S12 and S13 are

shown in Fig. 3.9. The point at which its value is closest to zero is the minimax

point (45, 57). This compares well with the minimax point (44.82, 57.47) when

computed symbolically using MATLAB.

3.5.2 Summary of Experiments

We begin with an experiment involving four agents moving amidst three static

obstacles. Initial positions of the agents at P1, P2, and P3 are transmitted to

the agent at P4 which then uses Algorithm Rendezvous point efficient to

compute PG. Fig. 3.10 captures this experiment. The four initial locations are

shown in Fig. 3.10(a). Once the agents have the location of rendezvous point

PG, they orient themselves towards it as shown in Fig. 3.10(b). Figures 3.10(c)

and 3.10(d) show the last turn locations Q1, Q3 of agents starting at P1 and P3.

Rendezvous of agents is shown in Fig. 3.10(d).

We now present another experiment where an agent encounters a fellow agent

on its path to PG. Fig. 3.11 summarizes this experiment. Initial locations of

three agents and one static obstacle are shown in Fig. 3.11(a). As P1, P2 and

42

P1

P2

P3

P4

(a) Initial position

P1

P2

P3

P4

(b) Agents orient themselves

P1

P2

P3

P4

Q1

(c) Reorientation to reach PG

P1

P2

P3

P4

Q1

Q3

(d) Rendezvous achieved

Figure 3.10: Rendezvous of four agents in the presence of three static obstacles

P3 start to move towards PG, the ultrasonic sensor mounted on P3 detects P2

as an obstacle (shown in Fig. 3.11(b)). P3 halts (and waits) as given by Al-

gorithm Path Following until P2 is no longer an obstacle (Fig. 3.11(c)) and

then continues to move towards PG. Agents achieve rendezvous as shown in Fig.

3.11(d).

P1 P2

P3

(a) Initial positions

P1 P2

P3

(b) P2 obstructs P3

P1 P2

P3

(c) P3 resumes moving towards PG

P1 P2

P3

Q3

(d) Rendezvous achieved

Figure 3.11: Rendezvous of three agents while one agent obstructs another’s path

Remark 5 As observed from this experiment, an agent detecting another agent

as an obstacle is also handled by Algorithm Path Following. Distance sensors

on the agents facilitate detection of fellow agents and the agent that arrives first

43

at a location common to the path of two agents proceeds first while the other agent

waits.

Additionally, we have performed an experiment on rendezvous of two agents

amidst obstacles that makes use of Algorithm Rendezvous point pair . The

study has also included experiments with humans moving, with larger number of

static obstacles and with multiple agents approaching a location simultaneously.

3.6 Summary

A multi-agent rendezvous problem with constraints on distance and environment is

studied in this chapter. Efficient geometric algorithms are presented for finding the

rendezvous point of two or more agents amidst obstacles minimizing the maximum

Euclidean distance of travel of the agents. An efficient hardware realization of the

algorithms on multiple small robots is also presented.

A natural extension of this problem would be to a scenario where, instead

of imposing a distance constraint that handles the agents individually (minimax

distance criterion), emphasis is given on the cumulative distance travelled by all

the agents. We discuss this in the following chapter.

44

CHAPTER 4

RENDEZVOUS OF WHEELED MOBILE

ROBOTS AMIDST OBSTACLES MINIMIZING

THE SUM OF EUCLIDEAN DISTANCES

In the previous chapter, hardware-efficient algorithms to compute an optimal ren-

dezvous location with a minimax distance constraint have been presented. In this

chapter, we seek the smallest (total) Euclidean distance the agents should travel

before they meet when travelling amidst obstacles. Enforcing a constraint on the

total Euclidean distance travelled can be related to the energy consumed by the

system as a whole and it is desirable to reduce this total energy.

The rendezvous of three mobile agents travelling the least (total) distance is

related to the notion of Fermat point, discussed in Courant and Robbins (1941). It

turns out that, even when obstacles are introduced, the task is still identification

of the appropriate set of three points to calculate the optimal rendezvous location.

We first derive results to limit the search (space) for locating the minsum point

when the environment includes multiple polygonal obstacles. We show that the

the optimal rendezvous location cannot lie outside the convex hull formed by the

obstacles and the locations of the three agents. We then show that it is adequate

to consider 7C3 triangles to calculate the rendezvous location when there is one

rectangular obstacle. We extend the results to the case of n rectangular obstacles

and develop direct and efficient algorithms with time complexities of O(n4 log n)

and O(n2 log n) respectively.

Experimental results are presented using multiple mobile robots (locally fab-

ricated) in an indoor environment. The robots do not require any communication

among themselves or with a remote personal computer. In particular, the entire

calculations and storage of data take place merely with the electronics on-board

the robots and hence they operate autonomously. We first present the terminology

involved in describing the rendezvous of agents in this chapter.

4.1 Terminology and Assumptions

In the absence of obstacles, the location in the plane that minimizes the sum of

Euclidean distances to three agents locations is referred to as the Fermat point

while the same for four agents is known as the Fagnano point. For greater than four

agents, Weiszfeld provided an iterative algorithm that converges at the optimal

location. In this chapter, we refer to this optimal location, in the absence of

obstacles as the minsum point (and denote by PS), irrespective of the number of

agents. When obstacles are introduced into the environment, it is of interest to

compute the rendezvous location that optimizes the sum of shortest paths from

robot locations. We refer to this location as the rendezvous point and denote it

by PU , as opposed to PG, the rendezvous point for minimax distance criterion.

The computation of PU requires the notion of visibility between two points and

the shortest path between two locations. Two points, p and q, in the plane are

(mutually) visible if the line segment pq does not intersect the interior of any object

(obstacle). This is used in defining the complete visibility graph of an environment

consisting of a set of n polygonal objects. When the objects are convex, it is

adequate to construct the reduced visibility graph (RVG) for calculation of shortest

paths, as discussed by Rohnert (1986).

In the presence of n convex polygonal obstacles with a total of r vertices, there

can be at most four supporting segments between a pair of convex polygons Pi

and Pj (where 1 ≤ i, j ≤ n). These segments can be computed in O(log ri+log rj)

time where ri and rj are the number of vertices in Pi and Pj respectively. Since

there are n×(n−1)
2

pairs of obstacles, we have four n×(n−1)
2

segments altogether

constituting the reduced visibility graph. Dijkstra’s algorithm (given in Fredman

and Tarjan (1984)) can then be used to obtain the shortest path in O(n2 + r log r)

time. Hershberger and Suri (1999) improve this computation of shortest path to

O(r log r) where r is the total number of vertices in all the obstacles. We now

discuss computation of the minsum point for three and four agents followed by an

incremental algorithm that computes the rendezvous point PU amidst n polygonal

obstacles.

46

4.2 Computation of Minsum Point PS

4.2.1 Minsum Point for Three Agents

The minsum point (also known as the Fermat point) of a set of three points in the

plane is the point that minimizes the total (Euclidean) distance from the three

points. The notion of minsum point also finds applications in triangulation and

vision (Jan et al. (2014) and Hartley et al. (2011)). Torricelli provided a geometric

solution to find this point based on constructing three equilateral triangles on the

three sides of the triangle formed by the robot locations. The point of intersection

of the circumcircles of these three triangles was shown to be the minsum point, as

illustrated in Fig. 4.1.

Figure 4.1: Illustration of minsum point PS for three agents at A,B and C.

The locations of the agents and the minsum point are shown in the figure

where the sum of distances to PS turns out to be 15.37 units. It can be observed

that any point adjacent to PS result in a higher sum of distances value. For

instance, the sum of distances to (3, 2.5), (4, 2.5), (3.5, 3) and (3.5, 2) lead to sum

of 15.41, 15.41, 15.40 and 15.41 units respectively.

47

4.2.2 Minsum point for four agents

When the environment includes a fourth mobile robot, calculation of the point

that minimizes the sum of the Euclidean distances travelled, in the absence of

obstacles, involves a quadrilateral formed from the locations of the agents. The

minsum point (also known as the Fagnano point) for four agents depends on the

convexity of the quadrilateral thus formed (Courant and Robbins (1941)). When

the robot locations form a convex quadrilateral, the minsum point PS turns out

to be the point of intersection of the diagonals, as shown in Fig. 4.2 (a), while PS

turns out to be the non-convex vertex otherwise, as illustrated in Fig. 4.2 (b).

Figure 4.2: Minsum point PS for four agents where the robot locations form a (a)
convex and a (b) non-convex quadrilateral.

When the number of agents exceeds four, the minsum point PS cannot be

obtained algebraically. One can, however, take advantage of a procedure called

one-point iteration method (developed initially in operations research) to compute

PS in the absence of obstacles. This procedure, referred to as Weiszfeld algorithm

(Weiszfeld (1936)) in literature is a gradient descent technique to converge to the

minsum location. Variations of Weiszfeld algorithm have also been recently re-

ported Drezner and Hamacher (2004). The algorithm developed in this chapter,

for the computation of rendezvous point PU , relies on the minsum point compu-

tation in the absence of obstacles. Since, the computation of PS, for more than

four agents involves an iterative procedure, we restrict our discussion to develop-

ment of an efficient algorithm for computing PU for three and four agents amidst

obstacles. However, the computation of rendezvous point for two agents requires

a different approach and is presented first.

48

4.3 Rendezvous Point PU for a Pair of Agents

The computation of PU for two agents is illustrated in Fig. 4.3. Rendezvous

with minsum distance constraint is achieved when the agents move towards each

other directly along the straight line connecting their initial locations. In the

absence of obstacles, every point on this straight line is minsum point PS since

the sum of distances to every point is equal to the length of the line segment

joining them. However, when obstacles are introduced, the rendezvous point PU

does not necessarily lie on the line segment joining the location of the two agents

as illustrated in Fig. 4.3. Once again, every point on the shortest path from one

robot to another computes to the same sum of distances value which is equal to

the length of the shortest path. Since the sum of distances to any other point in

the plane would be higher than this value, every point on the shortest path can

be treated as the rendezvous point. Fig. 4.3 indicates one such point PU on the

shortest path from A to B amidst the obstacles.

Figure 4.3: Rendezvous point PU lies on the shortest path from A to B.

4.4 Hardware-Efficient computation of PU

In this section, our interest is in the computation of the optimal rendezvous lo-

cation PU for three robot locations, with the minsum distance constraint, amidst

obstacles. We begin with a few key results necessary.

49

4.4.1 Key Results

The search for PU calls for examining the space in which the agents traverse. We

first present a result on limiting the region of search for the rendezvous point to

the convex hull formed from robot and obstacle locations.

Lemma 6 Consider an environment with three robots located at P1, P2 and P3.

Further, let there be n obstacles labelled O1, O2, · · · , On. Denote the convex hull

of the triangle and the obstacles together by CH. The rendezvous point that min-

imizes sum of Euclidean distances lies within the convex hull CH. �

Proof: We establish this result by contradiction. Consider a point P that lies

outside the convex hull CH as the rendezvous point. We can show that there

exists a counterpart Q (to P) such that the sum of the distances to Q is lesser

than the distance to P . To this end, we choose Q to be a point on the convex

hull corresponding to the foot of perpendicular from P . If P is visible to a given

robot location (say P3), then P3P is always greater than P3Q since P3P is the

hypotenuse of the triangle P3PQ. On the other hand, if P is not visible to a robot

location (say P2), then the path starting from P2 would have to pass through

another vertex (say F which lies either in the interior or on the boundary of the

convex hull CH) to reach P . Since, Q is a foot of the perpendicular from P , ∠FQP

would be greater than or equal to 90◦. By cosine rule, FP would be greater than

FQ. Thus, the sum of the lengths of the paths from P1, P2 and P3 to Q would be

shorter compared to the (sum of the lengths of) paths from P1, P2 and P3 to P .

This proves that the rendezvous point P cannot lie outside the convex hull CH.

When the perpendicular from P falls on the extension of the nearest edge of

the convex hull, the nearest vertex on the hull can be selected. The arguments to

show that the rendezvous point cannot be outside the convex hull (for this case)

are similar and hence omitted. Q.E.D.

Fig. 4.4 illustrates the ideas in Lemma 6. It is worth noting that although P

is visible to P1; Q is not. However, using the cosine rule, P1P > P1S where S is

the intersection of P1L (extended) and PQ. Since LS is hypotenuse in 4LQS,

50

Figure 4.4: The rendezvous at P can be ignored in lieu of the rendezvous at Q
due to the latter’s lower sum of distances value.

LS > LQ. We thus have P1P > P1L + LS > P1L + LQ, illustrating the path

to Q from P1 is shorter in length compared to the path to P from P1. It can

additionally be noted that there exists a point in the interior of the convex hull

with sum of distances lesser than the distance to Q. This would be elaborated

in the following results. While Lemma 6 allows us to search for PU within the

convex hull CH, it does not explicitly say how the convex hull should be handled

to locate PU .

Lemma 7 Rendezvous point PU corresponds to the minsum point of a triangle

formed by a combination of the initial locations of the agents and the vertices of

the obstacles. �

Proof: The three agents start from three distinct locations, P1, P2 and P3. In

the absence of obstacles, rendezvous point PU is identical to minsum point PS of

4P1P2P3. Without loss of generality, let robot P2 be obstructed by an obstacle

O1 before the rendezvous takes place. In this case, a vertex O3
1 of the obstacle

O1 replaces P2 (see Fig. 4.5) so the point that minimizes the sum of distances

will be obtained from the new triangle formed by P1, O
3
1 and P3. Therefore,

while the agents can move from one vertex of the convex hull to another, the final

rendezvous point PU corresponds to the minsum point formed by three locations

which correspond either to the vertices of obstacles or to the initial locations of

the agents (namely P1, P2 and P3). Q.E.D.

51

Lemma 8 Consider, as before, three agents located at the vertices of a triangle

4P1P2P3. Let there be one polygonal obstacle (with c sides where c is some con-

stant) labelled O1 with its c vertices located at O1
1, O

2
1, · · · , Oc

1. The rendezvous

point PU for these three agents in presence of the obstacle O1, is identical with the

minsum point of one of the c+3C3 triangles formed by the combinations of the c+3

points under consideration. �

Proof: Let P be any arbitrary point in the convex hull CH of 4P1P2P3 and

polygonal obstacle O1. Additionally, let us assume that P is not contained in the

obstacle O1. The three agents traverse a path to reach P from their respective

positions at P1, P2 and P3. Let Q1, Q2 and Q3 be the last three points on the

path traversed by the agents P1, P2 and P3 respectively before reaching P . Now,

let Q be the minsum point of the triangle 4Q1Q2Q3. The total distance travelled

by the agents from P1, P2 and P3 to reach Q1, Q2 and Q3 is equal while trying to

reach either P or Q. However, by the property of minsum point in a triangle,

Q1P +Q2P +Q3P > Q1Q+Q2Q+Q3Q (4.1)

Thus, the distance travelled by the three agents to reach Q is shorter than the

distance travelled by the three agents to reach P . Thus, for every point P in the

convex hull CH, there exists its counterpart Q with a shorter distance to travel.

Thus the rendezvous point PU has to be the minsum point of one among the c+3C3

triangles formed by the points under consideration. Q.E.D

Fig. 4.5 illustrates Lemmas 7 and 8 with the agents located at P1, P2 and P3.

A rectangular obstacle (c = 4) is considered and is depicted by O1
1O

2
1O

3
1O

4
1. Let

P be any arbitrary point. Since P is visible to both the agents at P1 and P3 (line

segments from P1 to P and P3 to P are not obstructed), Q1 is identical to P1 while

Q3 is identical to P3. However, the robot at P2 reaches P via O3
1. We thus identify

Q2 as O3
1. The minsum point of 4Q1Q2Q3 is located at Q which is not visible

from P2. However Q is visible from P1 and P3 (line segments P1Q and P1P3 do

not intersect any other object). Thus the path traversed by the robot P2 to reach

Q is via O3
1. Eq. (4.1) holds true because Q is the minsum point of 4Q1Q2Q3.

It is to be noted that the point Q is not necessarily the rendezvous point PU .

52

Figure 4.5: 4Q1Q2Q3 of Lemma 8 turn out to be 4AO3
1C

For every P in the convex hull, there exists a corresponding Q which is shorter in

distance to travel. The number of triangles is limited by the number of vertices

of the obstacles and the number of agents which is c + 3. Thus, a total of c+3C3

triangles can be formed.

Remark 6 An important observation from Lemma 8 is that a procedure to cal-

culate the minsum point for an appropriate triangle is adequate to obtain the ren-

dezvous point PU amidst obstacles. Larger-size polygons need not be considered.

�

In Lemma 8, it is possible that some of c+3C3 triangles have their corresponding

minsum point inside an obstacle thus making them invalid. For the remaining

valid triangles, the total distance travelled to reach the corresponding minsum

point can be calculated using shortest path algorithms. This total distance is

then minimized over all of the valid triangles to find the rendezvous point PU .

The procedure for finding the rendezvous point PU for one obstacle can be

extended to n obstacles by observing that the total points now under consideration

would be (cn+ 3). We therefore have Corollary 1.

Corollary 1 Rendezvous point PU in the presence of 3 agents and n obstacles

(with c vertices each) is the minsum point of one of the cn+3C3 combinations of

triangles formed from the three initial locations of agents and (cn) vertices of n

obstacles. �

53

4.4.2 Direct and Efficient Algorithms to compute PU

A direct algorithm to compute the rendezvous point PU for three agents amidst n

polygonal obstacles can be developed using Corollary 1.

Algorithm Direct Rendezvous Point

INPUT: Three distinct, non-collinear initial locations of the agents: P1, P2 and

P3. ‘n’ non-intersecting rectangular obstacles: O1, O2, · · · , On.

OUTPUT: Rendezvous point PU

Step 1: Find the set of minsum points F={f1, f2, · · · , fg} for the ‘g’ sets of

triangles where g=4n+3C3.

Step 2: Identify and eliminate ‘k’ elements in F that are contained in any of the

‘n’ rectangular obstacles.

Step 3: Determine the shortest path for each of the three agents to reach

the ‘g-k’ coordinates in set F and the corresponding set of total path lengths

D={d1, ...dg−k}.

Step 4: Identify the minsum point corresponding to the smallest value in set ‘D’

and assign it as the final rendezvous point PU (and output its coordinates). �

Remark 7 The computational complexity of Algorithm Direct Rendezvous

Point can be analysed as follows. Step 1 takes O(n3) time. Step 2 takes O(n4)

time. Step 3 takes O(n4 log n) time (using the shortest path algorithm in Hersh-

berger and Suri (1999)) while Step 4 takes O(n) time. Hence, the overall complex-

ity is O(n4 log n). �

One of the reasons for the high computational complexity of Algorithm Di-

rect Rendezvous Point is that it considers all the 4n+3C3 triangles at once.

Therefore, it is advantageous to look at alternate approaches. One approach,

often studied for construction problems in computational geometry (O’Rourke

(1993)), is based on incremental introduction of inputs. Recently Hartline and

Sharp (2006) utilized incremental models for optimization problems, especially

when complete knowledge of the inputs is available. Motivated by these works, we

investigate development of an efficient algorithm for the rendezvous problem by

54

introducing obstacles one by one and updating the triangle containing the minsum

point.

We note that the final rendezvous point PU is influenced by the cluster of

obstacles around the initial location of the minsum point PS calculated in the

absence of obstacles. Our strategy is thus based on introducing the obstacles in

increasing order of their distances from the initial minsum point PS. The initial

minsum point PS is obtained in O(1) time merely based on the location of the

three agents. With the introduction of each obstacle, there is a new location for

the agents. Lemma 8 helps in finding the new minsum point and the correspond-

ing new minsum triangle with every iteration. To handle cases where the final

rendezvous point PU is in direct line of sight to the initial location of one of the

agents, we require another pass in the opposite direction.

Algorithm Incremental Rendezvous Point

INPUT: Three distinct, non-collinear initial locations of the agents: P1, P2 and

P3, ‘n’ non-intersecting rectangular obstacles: O1, O2, · · · , On.

OUTPUT: Rendezvous point PU

Step 1: Calculate the initial minsum point, PS, of the triangle formed by the

three agents. Arrange the n rectangular obstacles in the increasing and decreas-

ing order of their distances from PS: In={Oi, Oj, · · · , Ol}, Dn={Ol, · · · , Oj, Oi}

(i, j, · · · , l) ∈ {1, 2, · · · , n}

Step 2: Introduce all the obstacles, one by one, as per the sequence provided by

the sets In and Dn. Use Lemma 8 to identify the current minsum triangle, update

the minsum point PS (including verification that the point is not in the interior of

any of the n obstacles) and the path leading to it with each obstacle introduction.

Step 3: Identify the final minsum points unique to the two orders: FFPI and

FFPD. Use a shortest path algorithm to find and record the path from the initial

location of the three agents to these two points FFPI and FFPD. If the path leads

to either FFPI or FFPD after passing through the vertices of the minsum triangle

(just found), then go to Step 5

Step 4: Recalculate and update the final minsum point FFPI or FFPD with the

55

current minsum triangle.

Step 5: Denote the sum of distances from the three agents to FFPI by DI and

to FFPD by DD. The point with the shorter distance among DI and DD would

be the rendezvous point PU and the corresponding path would be the final path

taken by three agents to reach their destination PU . �

Remark 8 Updating the minsum point in Step 2 includes verifying that the point

is not in the interior of any of the n obstacles. Updating the path includes cal-

culating the shortest path from the robot’s initial position to the current minsum

triangle. The current minsum triangle would be the new location of agents before

introduction of the next obstacle. �

We now illustrate Algorithm Incremental Rendezvous Point via Fig.

4.6. PS, initial minsum point, is obtained with the three agents located at P1,

P2 and P3. Step 2 calculates the new minsum point R1 after introduction of the

first obstacle O1 using Lemma 8. The shortest path from the three agents to R1 is

shown in Fig. 4.6(a). R1 is the minsum point of the triangle formed by the three

points P1, O
1
1 and P3.

(a) Movement to R1 from PS on adding Ob1. (b) Movement to R2 on adding Ob2

(c) Movement to R3 on adding Ob3

Figure 4.6: Computation of PU via an incremental addition of obstacles

56

On introduction of the second obstacle (O2), the rendezvous point shifts to

R2. R2 is the minsum point of the triangle formed by the three points P1, O
1
1

and O3
2. The shortest paths from the agents’ initial positions to R2 are indicated

by the blue lines in Fig. 4.6(b). The third obstacle O3 only obstructs the path

from P2 to O1
1. Computation of the shortest paths indicates that the second robot

need not go through O1
1 to reach R2. Changing the path necessarily changes the

minsum triangle as well. Thus, Step 3 ensures that the new minsum point is now

computed using the P1, O
3
2 and O1

3. Step 4 leads to the new minsum point R3. A

shortest path algorithm is run again to ensure that the triangle determined does

not change. Thus, the final rendezvous point is R3. The paths taken by the three

agents to reach R3 are given in black lines in Fig. 4.6(c).

Computational Complexity Analysis

Step 1 in Incremental Rendezvous Point calculates the (shortest) distances

from the initial minsum point to each of the n obstacles in O(n) time. It then

arranges them in increasing and decreasing orders. Thus, Step 1 has an overall

complexity of O(n log n). Step 2 includes calculation of the minsum triangle with

introduction of each obstacle. During the calculation, we verify that the minsum

point is not within any of the obstacles (which takes O(n) time). Additionally,

for cases where the path needs to be updated, the shortest path algorithm con-

sumes O(n log n) time. Hence, the overall complexity of Step 2 is O(n(n+n log n))

which is O(n2 log n). Step 3 computes the shortest path from the initial location

of agents to the final rendezvous points FFPI and FFPD. This can be accom-

plished in O(n log n) time using the shortest path algorithm in Hershberger and

Suri (1999). Steps 4 and 5 take constant time. The complexity of Algorithm

Incremental Rendezvous Point is therefore O(n2 log n).

Remark 9 The proposed algorithms (Direct and Incremental) readily extend to

non-rectangular obstacles. In particular, the notion of minsum point is applicable

also to general polygonal obstacles. The task is still identification of the appropriate

triangle for calculating the minsum point which is the rendezvous point. �

We now briefly discuss the computational aspects for the extension of the

57

incremental algorithm when obstacles are c-sided polygons (where c is some con-

stant) while the total number of vertices is nc. The number of obstacles is still

n. The first step involves calculation of the (shortest) distances from the initial

minsum point to each of the n obstacles and this takes O(nc) time. Sorting takes

O(n log n). Step 2 involving updation of the minsum triangle takes O(c3). We then

verify that the minsum point is not within any of the obstacles (which takes O(nc)

time). Additionally, path updation invokes a shortest path algorithm that takes

O((nc) log(nc)) time. Hence, the overall complexity of Step 2 is O((nc)2c2 log(nc)).

Step 3 computes the shortest path from the initial location of agents to the final

rendezvous points FFPI and FFPD in O((nc) log(nc)) time. Steps 4 and 5 take

constant time. Since c is considered to be a constant, the overall complexity is

O(n2 log n).

Remark 10 The results presented thus-far naturally extend to a scenario involv-

ing four agents. However, the minsum point will be computed as the discussed

in section 4.2.2 and quadrilaterals are considered in determining the rendezvous

point, instead of triangles. �

4.5 Implementation of the Algorithm on Mobile

Robots

The experimental setup utilized in the implementation of these algorithms has

already been discussed in section 3.5. It is worth noting that the rendezvous point

computed in the presence of obstacles need not be unique. As a result, the agents

could travel to different locations with the same optimal sum of distances value,

preventing rendezvous. We address this with the help of communication among the

agents. In particular, we allow one of the agents to collect location information of

all agents, compute PU using Algorithm Incremental Rendezvous Point and

transmit the same back to all the agents. The agents can then compute their re-

spective shortest paths to PU and utilize Algorithm Path Following discussed

in section 3.4.4 to traverse from their initial locations to PU . We now present

various experiments that illustrate computation of PU and effecting movement of

the robots to PU .

58

4.5.1 Experiments with Three Robots Amidst Obstacles

The on-board microcontrollers on each of the robots calculate the rendezvous point

PU (and the path to reach it) using Algorithm Incremental Rendezvous Point.

In order to avoid any collision with the obstacles, a tolerance (of ε set to 15 cm

in the experiments) around each obstacle is assumed and the coordinates of the

‘bounding’ rectangle are obtained in advance and stored in the memory of the

microcontroller. This information is compared with the location data computed

using input from the MOC7811 position sensor at each stage to determine the

location of the robots.

Initial locations and orientations of the robots are shown in Fig. 4.7(a) along

with two rectangular obstacles. The robots reorient and move towards the ren-

dezvous point PU as shown in Fig. 4.7(b) and 4.7(c). The path tracked by the

robots and their corresponding rendezvous is marked in Fig. 4.7(d).

(a) Initial position and orientation (b) Robots reorient and move towards PU

(c) Robots B and C have successfully
moved beyond obstacles

(d) Rendezvous of robots achieved

Figure 4.7: Rendezvous of three mobile robots amidst two obstacles

4.5.2 Rendezvous when a Robot Blocks another’s Path

One such scenario occurs when the algorithm computes a rendezvous point such

that two or more robots might have to traverse a single point on their way to the

rendezvous point PU . Each robot is equipped with ultrasonic sensors to deter-

59

mine this possibility. It is worth noting that the robots do not need any form of

communication to handle such scenarios.

This experiment deals with a scenario where robot P3 acts as an obstacle

to robot P1 while moving towards the rendezvous point. Initial locations and

orientations of the robots are shown in Fig. 4.8(a). Fig. 4.8(b) shows how the

computed path of P3 obstructs the path of P1. The ultrasonic sensor mounted on

P1 identifies this and halts robot P1 to let robot P3 to pass and avoid any collision.

Robot P1 then starts to move (Fig. 4.8(c)) towards rendezvous point PU . It is

worth noting that the robots do not halt as they come closer to the rendezvous

point misidentifying other robots as obstacles. This is because the tolerance of

ultrasonic sensors is gradually reduced as the robots approach rendezvous point.

The final rendezvous of robots is shown in Fig. 4.8(d). It can additionally be noted

that the distance constraint has not been compromised to handle this scenario.

(a) Initial position (b) Robot P1 identifies P3 as an obsta-
cle and halts

(c) Robot P1 begins to move once P3 is
no longer an obstacle

(d) Robots united

Figure 4.8: Rendezvous of three robots while P3 acts as an obstacle to P1

4.5.3 Experiments with Four Robots Amidst Obstacles

Three obstacles are chosen for this experiment where four robots attempt to

achieve rendezvous. It is worth noting that the computation of PU using Al-

gorithm Incremental Rendezvous Point takes into consideration the results

from section 4.2.2.

60

Initial location and orientation of the robots are shown in Fig. 4.9(a) and the

obstacles have been marked. It can be noted from Fig. 4.9(b) that robot P4 begins

to move towards PU . Robot P4 obstructs the path of robot P3 as shown in Fig.

4.9(c). Robot P3 halts for P4 to clear its path. The robots eventually achieve

rendezvous as shown in Fig. 4.9(d).

(a) Initial position and orientation (b) Robots reorienting towards ren-
dezvous point PU

(c) Robots P1, P3, P4 have succesfully
moved beyond an obstacle

(d) Rendezvous of robots achieved

Figure 4.9: Rendezvous of four robots amidst obstacles

4.6 Summary

In this chapter, we have discussed the rendezvous of mobile agents with constraint

on the total Euclidean distance travelled by the agents. We show that the com-

putation of rendezvous point PU amidst polygonal obstacles takes no more than

O(n2 log n) time. We have presented experiments that execute the algorithms

discussed on miniature mobile robots equipped with only a microcontroller.

Thus far, we have considered scenarios where robots consider the locations of

obstacles while computing the rendezvous point. In the next chapter, we deal with

an intelligent obstacle (an adversary) that deliberately attempts to capture one of

the agents and thus prevent rendezvous. We allow the adversary, vision support

and derive the conditions under which two agents can achieve rendezvous in the

presence of an adversary although travelling with inferior speeds.

61

CHAPTER 5

GATHERING OF FRIENDLY AGENTS

AMIDST AN ADVERSARY EQUIPPED

WITH A VISION SENSOR

In the previous chapters, we considered the rendezvous of multiple agents impos-

ing a distance constraint. In this chapter, we consider rendezvous of a different

kind. In particular, we assume that an autonomous agent is tasked with deliv-

ery of some goods at a prespecified destination. We call this agent as a delivery

agent. In defence and other applications, the delivery agent may encounter an

intelligent obstacle (in the form of an autonomous adversary) prior to completion

of the delivery of goods. We study the problem of protection of the delivery agent

(against this intelligent obstacle) via another autonomous agent (termed as the

rescue agent). The delivery agent and the rescue agent are referred to as ‘friendly

agents’ in this setting. The task of the rescue agent is to rendezvous with the de-

livery agent before (an undesirable) rendezvous of the adversary with the delivery

agent takes place. In a sense, there is competition between the adversary and the

rescue agent for rendezvous with the delivery agent.

The various aspects involved here include determining the conditions/scenarios

that facilitate rendezvous of the rescue agent with the delivery agent. This chapter

presents a geometric framework that identifies regions in the plane where the

(rescue agent-delivery agent) rendezvous would successfully take place and where

capture of the delivery agent by the adversary would happen. We begin by first

detailing the motivation for the study pursued in this chapter.

Autonomous delivery agents, entrusted with the task of carrying goods from

one point to another in defence zones and accident sites (Chen and Barnes (2014)

and Weiss (2011)), help reduce casualty while simultaneously gathering valuable

information on the environment through sensors mounted on them. Goods carried

by these agents may have a marker/indicator that guides other members of the

team to recognize the contents on arrival at a prespecified destination. For exam-

ple, an agent carrying medical equipment may be identified by a certain marker

while one carrying food may have a different indicator. However, these markers

can be exploited by an adversary. Hence, the delivery agents become vulnerable

to predatory attacks prior to reaching the destination. These agents may not be

necessarily equipped with hardware for taking (self) defensive action in the event

of an attack.

We explore various aspects of the rescue/capture problem we address in this

chapter using clues from nature regarding capabilities of the agents and the ad-

versary. In nature, shepherds typically monitor their flock (of sheep) visually and

thwart an attack by a predator taking measures based partly on the approximate

distance of the predator. Similarly, a predator chooses a sheep based on sight as

well as its proximity to the latter. We therefore ask the following questions: In

the autonomous setting, can an adversary successfully capture the delivery agent

based on only a vision-sensor ? Also, can a rescue agent protect a delivery agent

using merely wireless communication and without vision support ?

The advantage in not having a vision-sensor on the rescue agent is reduction

in hardware (and consequently power consumption). Absence of communication

hardware on the adversary has similar benefits. However, limited hardware on-

board presents several challenges. The rescue agent needs to gather information

on the adversary through the delivery agent. Further, the adversary has to react

swiftly to changes in the path of the delivery agent. We present next the definitions

and assumptions required for the study.

5.1 Definitions and Assumptions

Definition 3 For any two given agents (say P1 and P2) travelling with speeds (v1

and v2 respectively), the dominance region for agent P1 is defined as the set of

points in the plane where agent P1 reaches prior to P2. The curve that separates

the dominance regions of P1 and P2 is defined as the dominance curve. �

The assumptions used for the study are as follows.

63

Start EndVision Sensor(VS)Distance Sensor(DS)
Wireless Communication(WC)R

D
A

Figure 5.1: Scenario involving one delivery agent (D), one rescue agent (R) and an
adversary (A). The rescue agent (R) is indicated by a green triangle,
adversary (A) by a red star and delivery agent (D) by a blue square.

� Each of the three entities (delivery agent, rescue agent and adversary) is
small and therefore can be approximated by a point.

� Delivery agents are assumed to travel with the least speed (denoted by vd)
in view of the cargo they carry. Rescue agents travel at a somewhat higher
speed (denoted by vr) than delivery agents.

� The delivery agent can sense an attack and communicate this to the rescue
agent. The rescue agent provides ‘instructions’ to the delivery agent to evade
the adversary.

� The communication between the delivery and rescue agents offers the latter
an advantage to minimize the time for rescue. In order to counter this
advantage, we assume the adversary has the maximum speed (denoted by
va) among the three.

� Markers present on the delivery agents are recognized by the vision sensor
(VS) on the adversary. All the entities are also equipped with a distance
sensor (DS) for obstacle detection. No communication exists between the
adversary and the agents.

� Distance sensor information is used by the adversary to recognize a rescue
of a delivery agent and stop. That is, when the distance sensor on the
adversary detects two objects at (nearly the) same distance, the process
stops. Similarly, communication from the delivery agent (about capture) to
the rescue agent will halt the rescue process.

5.2 A Geometric Framework for Solution

We present a geometric approach to address this problem. Using the framework,

we provide a characterization of the safe region for the delivery agent and identify

the outcome (namely, rescue or capture) for given initial locations and speeds of

the three agents.

64

The identification of safe regions is based on the notion of Apollonius circles

(Isaacs (1965)). The regions partition the plane and help efficiently determine

whether a rescue or capture would take place for different initial locations and

speeds of the agents and the adversary. We begin with a study of the interac-

tions between the three entities, namely the delivery agent, rescue agent and the

adversary.

5.2.1 Interactions between the Two Agents and Adversary

The geometric framework is developed by individually handling the two interac-

tions: delivery and rescue agents, delivery agent and adversary.

Dominance region between two friendly agents

Delivery and rescue agent interaction (denoted by D and R respectively) is char-

acterized by communication between the agents. Using this communication, the

agents attempt to meet by deciding a location (denoted by T) and proceeding

to it along a straight line path. Location T can be computed by identifying the

dominance region of the delivery agent, which in turn, depends on the dominance

curve (Definition 3) of the two agents.

It is worthwhile to think of the dominance curve as the locus of all points in the

plane where two agents arrive simultaneously. This notion is used in Lemma 9 to

compute the dominance curve for the two agents. Note that the curve given by Eq.

(5.1) is indeed an Apollonius circle constructed with the same parameters (Oyler

et al. (2016)). Our interest, however, is in computing the dominance region that

is valuable to compute the meeting location (T) for the delivery agent in section

5.3.

Lemma 9 The dominance curve for the delivery agent (D, located at (xd, yd))

and rescue agent (R, located at (xr, yr)) moving with speeds vd and vr respectively,

is a circle (Cr) with center at (xdr, ydr) and radius rdr as given by Eq. (5.1). �

65

(xdr, ydr) = (
xdv

2
r − xrv2d
v2r − v2d

,
ydv

2
r − yrv2d
v2r − v2d

)

rdr =

√
x2dr + y2dr −

v2r(x
2
d + y2d)− v2d(x2r + y2r)

v2r − v2d

(5.1)

Fig. 5.2 illustrates the dominance curve for a delivery agent D and a rescue

agent R (depicted by filled blue square and green triangle respectively). The curve

corresponds to C0 with center at N0. Since the rescue agent is assumed to be

moving faster than the delivery agent, the dominance curve encloses the delivery

agent. Consequently, the region (in blue) contained by this curve (denoted by Sdr)

is the dominance region of the delivery agent while the curve itself and the region

(in green) external to it (denoted by ¬Sdr) is dominated by the rescue agent.

Additionally, Fig. 5.2 illustrates the dominance curve Ct constructed at inter-

mediate locations of D and R (denoted by Dt and Rt) on their straight line path

to T . It can be observed that Ct intersects (the previously computed) C0 at T .

Such a property of the dominance curves eliminates any need for recomputation

of dominance regions as the agents travel to T . This is given by Theorem 4. It is

based on Isaacs (1965).

R t D
tf

t0
T

C0
θr θdRt Dt

Ct r0
rttt0
Sdr¬Sdr
N0Nt

Figure 5.2: Dominance curves (C0, Ct) for initial and intermediate locations of
delivery (D,Dt) and rescue (R,Rt) agents.

Theorem 4 Let T be the meeting point for two agents located on the dominance

curve computed with their initial locations and speeds. Subsequent dominance

curves constructed with locations of agents as they move towards T remain tan-

66

gential to T . �

Proof: Let initial locations and speeds of delivery and rescue agents be {D(xd, yd),vd}

and {R(xr, yr),vr} respectively. The center N0(x0, y0) and radius r0 of the domi-

nance curve C0 for these initial locations can be obtained using Eq. (5.1). Consider

any arbitrary point T (x, y) on the circle C0. The intermediate locations of D and

R after time t (on their way to T) are given by Dt(xdt, ydt) and Rt(xrt, yrt) in Eq.

(5.2).

Dt(xdt, ydt) = (xd + tvd cos(θd), yd + tvd sin(θd))

Rt(xrt, yrt) = (xr + tvr cos(θr), yr + tvr sin(θr))
(5.2)

where θd, θr are the heading angles from D,R to T .

Dominance curve Ct can now be recomputed using the updated locations Dt

and Rt as a circle centered at Nt(xt, yt) with a radius of rt using Eq. (5.1). It

follows that the two centers (N0 and Nt) and T are collinear as given by Eq. (5.3).

N0Nt +NtT = N0Nt + rt = N0T = r0 (5.3)

Thus, the two circles Ct and Cr meet at T . In other words, the meeting location

picked up for initial locations continues to hold the property for intermediate lo-

cations as well. Q.E.D.

We now explore a scenario where the rescue is not characterized by the two

agents occupying the same location T . Instead, it is adequate to have the rescue

agent come in close proximity to the delivery agent. We quantify this proximity

via the notion of a limiting distance as per Definition 4.

Definition 4 The maximum distance between delivery and rescue agent, below

which the delivery agent is considered to have been rescued is defined as the lim-

iting distance of the rescue agent. This is denoted by dr. �

The dominance curve is now given as the locus of points reached by the rescue

agent where the separation between the two agents is dr. The dominance curve

67

thus formed turns out to be an oval, symmetric about the line joining the two

agent locations, as given by Eq. (5.4).

PD

vd
=
PR− dr

vr
(5.4)

Capture region between a vision guided adversary and an agent

The adversary A uses its vision sensor to identify the delivery agent and begins its

pursuit. It is worth noting that the direction of delivery agent (and not its position)

is sufficient for pursuit. Since the adversary relies solely on the vision sensor (and

not on communication), the path taken by the adversary is not necessarily a

straight line. In other words, the adversary continuously reorients itself towards

the delivery agent while pursuing it with a speed of va. These reorientations are

separated by a finite time interval to facilitate processing of information from the

vision sensor and to enforce the change in direction in a physical system. We

define this time interval as the sampling time and denote it by ts.

Fig. 5.3 illustrates the effect of sampling time on the capture of delivery agent.

In Fig. 5.3 (a), the path taken by the adversary A (red star) in pursuit of the

delivery agent D (blue square) that is heading in a fixed direction (θd) is shown.

Reorientations at fixed intervals of ts = 0.4 can be observed in the figure for six

time instants. At this point, the distance between the agenta and adversary is

0.76 units. Fig. 5.3 (b) illustrates the same scenario for slightly higher sampling

time (ts = 1.0). As a result, the adversary repeatedly overshoots the location of

the delivery agent after two time instants.

In order to define capture of delivery agents for the two scenarios given above,

we revisit the notion of limiting distance. A delivery agent is considered to be

captured if its distance from adversary is less than the limiting distance (denoted

by da) of the adversary. For instance, in Fig. 5.3(a), if the limiting distance is

considered to be 1 unit (da = 1), the delivery agent is considered to be captured

after six time instants (da > 0.76). For the same value of da in Fig. 5.3(b), the

closest an adversary can get to D is 2.1 units which indicates that a capture is

never possible (da < 2.1).

68

The dominance curve can now be constructed in terms of the locus of points in

the plane where the distance between delivery agent and adversary is less than the

limiting distance. We use this in developing Algorithm DA Dominance Curve

below. Additionally, it is desirable to minimize the sampling time of the adver-

sary to prevent cases where a capture is impossible (Fig. 5.3 (b)). This can be

achieved by employing a method for quick identification of the delivery agent and

minimizing the delay in reorientation. Additional details are presented in section

5.4 which involve computing the Circular Hough Transform.At0
D

t5
t0 t1t2t3

t4t5
t6

ts=0.4
D
Ats=12.10.76 t6 θd θd(a) (b)

t1t2
Figure 5.3: Adversary’s (A) vision based pursuit of delivery agent (D) heading in

a fixed direction θd. va = 5, vd = 2 and DA = 13. (a) ts=0.4 (b)
ts=1.0

Algorithm DA Dominance Curve

INPUT: Distinct initial locations and speeds of adversary (A(xa, ya), va) and

delivery agent (D(xd, yd), vd). Sampling time (ts) and limiting distance (da) of

adversary.

OUTPUT: Dominance curve (Ca)

Step 1: Compute the heading angle φ for adversary using the current location of

delivery agent, as given by Eq. (5.5).

φ = arctan(
yd − ya
xd − xa

) (5.5)

Step 2: For a given heading angle θ of the delivery agent, compute the new

69

locations of delivery agent and adversary after time ts using Eq. (5.6).

A(xa, ya) = (xa + tsva cosφ, ya + tsva sinφ)

D(xd, yd) = (xd + tsvd cos θ, ys + tsvd sin θ)
(5.6)

Step 3: If the distance between A and D is less than da, conclude that a capture

has occurred and proceed to Step 4 with current location of D. Else return to

Step 1 with the new locations of A and D.

Step 4: Repeat Steps 1-3 for all angles of θ, where θ ∈ [0, 2π). Connect all

locations of D obtained in Step 3 (at capture) and output it as the dominance

curve Ca. �

Fig. 5.4 illustrates the Algorithm DA Dominance Curve for two distinct

locations of delivery agent and the adversary. One instance of pursuit with head-

ing angle θ = 2π/3 is shown in the figure where the capture occurs after five

time instants. Due to its lower speed, dominance curve Ca once again encloses

the delivery agent. Dominance region (in blue) of D (denoted by Sda) is the re-

gion interior to Ca while the curve itself and the region (in red) external to it is

dominated by the adversary (denoted by ¬Sda).t5ts=0.5 1.4 DA t0t0
Ca

Sda¬Sda
2π/3

Figure 5.4: Dominance curve Ca and dominance regions (Sda,¬Sda) of delivery
agent and adversary. va = 3, vd = 1, da = 2.5, ts = 0.4 and DA = 20.

It is worth noting that the dominance curve is characterized by the locations

of the delivery agent (and not adversary) at capture. Further, the point of capture

for a given heading angle of delivery agent remains unchanged with subsequent

recomputations of the dominance curve. Consequently, the analysis performed on

70

initial locations of agents and adversary continue to hold until capture or rescue.

5.3 Safe regions and capture-rescue algorithms

We are now equipped with the dominance regions of delivery agent with respect

to both rescue agent (Sdr) and adversary (Sda). These can be used to determine

the outcome: capture or rescue. We now define the notion of a safe region.

Definition 5 The region where a delivery and rescue agent reach prior to the

arrival of adversary is termed as the safe region for the delivery agent and is

denoted by Sh. �

Safe region can be computed by identifying the set of points where the rescue

agent reaches prior to or along with delivery agent. However, it is to be ensured

that there is no capture by adversary at these points. This observation allows us

to derive a relation between the two dominance regions and the safe region. This

is established via Theorem 5.

Theorem 5 Given the dominance regions of delivery agent with respect to ad-

versary (Sda) and rescue agent (Sdr), safe region (Sh) can be computed using Eq.

(5.7).

Sh = Sda \ Sdr (5.7)

�

Proof: It follows from Definition 3 that the interior of dominance region is dom-

inated by the entity contained in it. Since the speed of delivery agent is low-

est among the three, its initial location is contained in both dominance regions.

Consequently, any point inside Sda can be reached by delivery agent before the

adversary. Similarly, any point external to Sdr can be used for rescue by R. The

intersection of these two regions determines the safe region as given by Eq. (5.8).

Sh = Sda ∩ ¬Sdr

=⇒ Sh = Sda \ Sdr
(5.8)

71

Q.E.D.

Fig. 5.5 illustrates computation of safe region using Theorem 5. The dom-

inance curves Ca (shown in red) and Cr (shown in green) are computed using

Algorithm DA Dominance Curve and Eq. (5.1) respectively. The corre-

sponding dominance regions are then used to compute the safe region Sh (shaded

in blue). With the knowledge of safe region, an appropriate meeting location for

R and D is picked where a rescue is attempted. It is worth noting that a part of

the boundary curve Cr is included in the safe region while the entire curve Ca is

excluded from it.

Tt0D(15,10)vd= 2

A(5,21)va= 5ts=0.5

(27,10)R vr=4t4 t0

t1 t2 t3 t4
t0

Cr Ca

Sh

Figure 5.5: Computation of safe region Sh and a successful rescue attempt

In order to minimize the distance travelled by the delivery agent prior to rescue,

T is chosen as the closest point in Sh from D. However, in the absence of a safe

region, capture is inevitable. In such a scenario, it is favorable to minimize the

distance between the delivery and rescue agent at the time of capture. Hence

the meeting location is chosen to be the point of intersection of the line segment

joining the two agents and the dominance curve Cr. We now present algorithms

adopted by the adversary and agents.

Algorithm Adversary

INPUT: Data from vision and distance sensor. Speed va, limiting distance da

and sampling time ts of adversary.

72

OUTPUT: Capture or Rescue.

Step 1: Use the data from vision sensor to identify the heading direction to the

delivery agent.

Step 2: Reorient the adversary towards delivery agent and proceed with speed

va for time ts while monitoring distance sensor readings. If the vision or path to

D is obstructed, halt and proceed to Step 4. Else continue to Step 3.

Step 3: Use the distance and vision sensor information to check if the distance

to D is less than da. If True, output that a capture has occurred and Stop.

Else verify if D is rescued by R. If True, output that a rescue has occurred

and Stop. Else proceed to Step 1.

Step 4: Proceed with speed va in the direction normal to the line joining the

adversary and obstruction, until the path and vision to D is clear. Return to

Step 1. �

Algorithm Rescue Agent

INPUT: Locations and speeds of the adversary and agents. Sampling time ts of

adversary and limiting distances da, dr. Distance sensor information.

OUTPUT: Capture or Rescue.

Step 1: Compute the dominance regions Sdr and Sda using Eq. (5.4) and Algo-

rithm DA Dominance Curve respectively. Verify if a safe region (Sh) exists

with the help of Theorem 5.

Step 2: If Sh = ∅, compute the meeting location T as the point where line joining

D and R meets the curve Cr.

Step 3: If Sh 6= ∅, compute the point in Sh that is closest to D as the meeting

location T .

Step 4: Communicate T to the delivery agent. Move the rescue agent to T with

speed vr while monitoring the distance sensor.

Step 5: If a capture is detected or the path is obstructed by the adversary, output

that a capture occurred and Stop.

73

Else output that a rescue has occurred at T and Stop. �

Algorithm Delivery Agent

INPUT: Initial location and speed of delivery agent. Meeting location T from

rescue agent. Distance sensor information.

OUTPUT: Capture or rescue.

Step 1: Reorient and proceed towards T with speed vd while monitoring the

distance sensor readings.

Step 2: If the distance from adversary A is less than da, output that a capture

has occurred and Stop.

Step 3: If the distance from the rescue agent R is less than dr, output that a

rescue has occurred and Stop. �

The pursuit by adversary and an attempt at rescue by the two agents is illus-

trated in Fig. 5.5. The pursuit of adversary is governed by Algorithm Adver-

sary and continues for four time instants. The termination is caused by Step 3

of the algorithm when the adversary discovers that the delivery agent is rescued.

The computation of safe region and the meeting location (T) is carried out by

the rescue agent with the help of Algorithm Rescue Agent . Algorithm De-

livery Agent assists the delivery agent in arriving at T where it is successfully

rescued.

In a scenario where the vision of adversary is occluded by the rescue agent, Step

4 of Algorithm Adversary allows the former to perform an evasive maneuver

and regain its vision. The higher speed of adversary becomes especially useful in

such a scenario. We illustrate such a maneuver of the adversary via experiments

in section 5.4.

5.4 Experimental Verification with mobile robots

Multiple differential drive mobile robots equipped with Arduino UNO boards func-

tion as agents and adversary. Localization is handled by MOC7811 position en-

coders while ultrasonic sensors allow agents to detect an adversary. Each robot is

74

powered by a 12V, 1.3AH Lead acid battery. Agents communicate with the help

of Xbee-PRO RF modules.

The adversary is equipped with a Raspberry Pi 3 board with an integrated Pi

camera (with only 2D vision support). The red and green boxes on the delivery

agents indicate their cargo. The adversary exploits these indicators by isolating

the colors in the captured image and performing a Circular Hough transform

(CHT). The circle computed using CHT around the closest delivery agent has

been discussed in the introduction and is illustrated in yellow in Fig. 1.5(b)..

We now describe two experiments. The first experiment is depicted in Fig.

5.6. Here, a delivery agent (D) is interrupted on its path by an adversary (A).

Delivery agent detects the adversary with the help of its distance sensor and

communicates the same to the rescue agent. Adversary begins its pursuit as its

vision sensor identifies the delivery agent at P ′. In this scenario, the delivery agent

is successfully rescued at T before a capture by the adversary.

P1 P2D
R A

P’T Sh
Figure 5.6: Rescue of delivery agent in its safe region

The second experiment involves obstruction of the vision of the adversary. In

a scenario where the vision of the adversary is obstructed by one of the agents,

the adversary adopts an evasive maneuver to restore its vision. The experiment in

Fig. 5.7 illustrates this. Here, the higher speed of adversary allows it to capture

the delivery agent although it was initially obstructed by a rescue agent. Note

that the adversary accomplishes capture without prior knowledge of its distance

to the delivery agent.

In these experiments, the pursuit by the adversary has been improved by ex-

ploiting the interrupts on its Arduino UNO board to directly obtain the heading

direction from Raspberry Pi 3. Such an approach brings down the sampling time

75

of adversary to just 0.2 seconds. It has been shown that the proposed algorithms

allow a quick computation of meeting location thus assisting in rescue of the de-

livery agent.

Additional experiments reveal that in some scenarios, the delivery agent is

successfully rescued by proceeding towards the adversary instead of evading away.

The algorithms presented naturally handle such scenarios as well.

Further, in order to avoid collision between players at capture or rescue, we

assume finite limiting distance values that are greater than sum of the maximum

lengths of the robots. Since we deal with identical robots that are 0.25 m long,

we consider limiting distances to be equal to 0.5 m (dr = da = 0.5) leading to an

oval shaped dominance curve as given by (5.4).

It is worth noting that the meeting location does not necessarily lie on the line

joining delivery and rescue agents’ locations as illustrated in Fig. 5.6.

RA T’
A’

D’R’ D
Figure 5.7: Adversary handles occlusion of vision

5.5 Summary

In this chapter, the impact of an intelligent obstacle (adversary) on the move-

ment of an autonomous delivery agent towards its destination has been studied.

The study involved understanding the dominant strategies of the adversary and

efficient use of communication between the delivery and rescue agents to achieve

rendezvous. Additionally, experimental verification involving miniature mobile

robots has been presented. The setup requires no communication with a central

controller. All the processing, including identification of the delivery agent using

images captured by a Pi camera has been performed on-board in real time. The

76

solution technique involves discussion on dominance and safe regions for various

locations and speeds of the three entities.

Having explored the distance-based constraints for rendezvous of mobile agents

in the presence of static and intelligent obstacles, we now impose constraints on

the time for rendezvous. This is the subject of discussion in the next chapter.

77

CHAPTER 6

TIME OPTIMAL RENDEZVOUS FOR

MULTI-AGENT SYSTEMS

In the previous chapters, we have studied rendezvous with distance constraints

and competitive rendezvous (involving a delivery agent, a rescue agent and an

adversary). In this chapter, we address the rendezvous problem with a different

type of constraint. In particular, we address computation of a point that can be

reached by the agents in minimum time from their (given) initial locations in the

presence of obstacles. We refer to this point as the Time Optimal Rendezvous

Point (TORP) and denote it by Rt. We assume that each agent is a point mass

(similar to assumption in the earlier chapters) and further the starting locations of

the agents are known to all the agents. This work has been reported in Vundurthy

and Sridharan (2018).

We approach this problem by observing that TORP is identical to the point in

plane that minimizes the maximum time taken by any agent to arrive at the point.

This leads to an algorithm to compute TORP for k agents. We then explore the

location of TORP when it is computed on intermediate locations of agents, where

each agent has traversed a finite time prior to arriving at these locations. We use

these two results to compute the TORP for k agents moving amidst n polygonal

static obstacles, followed by extending the results to handle moving obstacles.

6.1 Key Results

In this section, we present an algorithm to compute TORP for k agents in the

absence of obstacles. We begin by formulating this problem as a minimax problem

in travel times of agents. Such a formulation facilitates the computation of the

TORP as the center of the smallest enclosing circle for all agent locations.

6.1.1 Computing TORP for k agentsP1 TP2 P3 P4
R
(a) Rendezvous at R

P4P3
P1

P2 Rt Tt
Ct

(b) Rendezvous at TORP, Rt

Figure 6.1: Illustration of rendezvous points and travel times for four agents

The total time (T) for rendezvous at a location (say R) is equivalent to the

time taken by all agents to arrive at the location. Without loss of generality, let

the agents arrive at R in the order P1, P2, · · · , Pr, indicating that P1 arrives at R

prior to every other agent while every other agent arrives at R before Pk. Thus

the time taken for rendezvous is equal to the travel time of agent Pr which is the

maximum time taken by any agent to arrive at R. Further, TORP (Rt) can then

be computed by comparing the times for rendezvous at every possible location in

the plane and identifying the point where the minimum occurs.

Fig. 6.1 illustrates the rendezvous of four agents at two distinct locations R

and Rt. In Fig. 6.1(a), the agents arrive at R in the order P1, P2, P3, P4 and thus

the time for rendezvous T is the time taken by P4 to arrive at R. Fig. 6.1(b) hints

at the computation of TORP. It can be observed that the rendezvous point Rt is

equidistant to P1, P3 and P4. Thus the time for rendezvous (denoted by Tt) is

equal to the travel time of either of these agents. Further, the time for rendezvous

at Rt (in Fig. 6.1(b)) is definitively lesser than the time for rendezvous at R (in

Fig. 6.1(a)).

Consider the location of agent P2 in Fig. 6.1(b). Since the time taken by P2

to arrive at Rt is less than the time taken by remaining agents, agent P2 does

not have any affect on the location of Rt. In fact, as long as P2 remains within

the circle Ct, it would arrive at Rt prior to the remaining agents and thus cannot

affect the location of TORP. It can further be observed that any addition of new

agents within the circle Ct would not affect the location of TORP either. The

79

following Theorem 6 utilizes these observations to compute the TORP.

Theorem 6 The TORP (Rt) for k identical agents is located at the center of the

smallest enclosing circle that contains the initial locations of these k agents. �

Proof: Without loss of generality, let m agents (where m ∈ Z+,m < r) lie on the

smallest enclosing circle (denoted by Ct and centered at Rt) and the remaining

r−m agents lie within the circle Ct. The r−m agents contained in the circle do

not contribute to the TORP since their travel times to Rt are less than those of

the n agents that lie on the circle Ct.

For the n agents that lie on the circle, consider a point P that is a finite

distance away from Rt. The rendezvous time (T) taken by the n agents to arrive

at P would be greater than the rendezvous time to arrive at the center of the circle

Rt. Thus every other point in the circle can be discarded in lieu of the center of

the circle as a candidate TORP. Consequently, the center of the circle Rt is indeed

the TORP. Q.E.D.

P1
P2

P3

P9 P8 P7

P4 P5
P6Rt TtT

P
Ct

Figure 6.2: TORP for 9 agents is the center of the smallest enclosing circle Ct

Fig. 6.2 illustrates Theorem 6 for 9 agents. Agents P1, P3, P5, P7 lie on the

smallest enclosing circle (m = 4) while the remaining agents lie within the circle

Ct. Due to their lower travel times to Rt, the remaining 5 agents (shown in black)

do not affect its location. For an arbitrary rendezvous point P , agent P5 takes the

longest time (T) to arrive at P which is the rendezvous time for all agents. Since

this time T is greater than the rendezvous time (Tt) to the center of the circle, the

80

point P is ignored as a candidate TORP. With a similar analysis, every point in

the plane has a longer rendezvous time compared to the center of the circle which

proves that the TORP is indeed the center of the circle (Theorem 6).

In the following section, we extend this analysis to a scenario where the agents

have elapsed a finite time before arriving at the locations that are used in com-

puting the TORP.

6.1.2 Computing TORP using intermediate locations of k

agents

In this section, the computation of Rt is performed on the locations of k agents

given by {P1, P2, · · · , Pr}, while taking into account the respective times (denoted

by {t1, t2, · · · , tr}) the agents spend in arriving at these locations. We refer to the

time elapsed as the weight of an agent at a given location. The solution presented

in the previous section 6.1.1 turns out to be a special case of this problem with

zero weights at all agent locations.

P1t1
P2
R
t2

t3P3T
(a) Rendezvous at R

P1t1
P2
Rt
t2

t3P3T1
T2 T3

(b) Rendezvous at TORP, Rt

Figure 6.3: Illustration of rendezvous points for three agents with non zero weights

Fig. 6.3 illustrates the rendezvous of three agents located at P1, P2, P3 with

their associated weights t1, t2, t3 respectively. It is worth noting that the informa-

tion on locations of these agents prior to their arrival at P1, P2, P3 is unknown and

the figure illustrates only one among infinite possibilities of such locations. An

arbitrary rendezvous location R is picked in Fig. 6.3(a). It can be observed that

agents P1 and P2 arrive at R prior to the arrival of P3. Thus the rendezvous time

81

in this scenario is equivalent to the travel time of agent P3 which is T + t3.

In order to obtain the TORP, it is desirable to minimize the maximum time of

arrival at a given rendezvous point. This is achieved by observing the weights at

each agent location and ensuring that the rendezvous point be closer to the agent

that has the highest weight. It is further desirable to verify the existence of a

location where the agents can arrive simultaneously, as illustrated in Fig. 6.3(b).

Such a location (if it exists) would have the following property given by (6.1).

In the absence of weights, such a location would be the center of the smallest

enclosing circle (Theorem 6). We utilize this to present Theorem 7.

t1 + T1 = t2 + T2 = t3 + T3 (6.1)

Theorem 7 Consider k circles with their centers located at agent locations P1, P2,

· · · , Pk and their radii equal to the weights at each location t1, t2, · · · , tk.

The TORP (Rt) for these k agents with their respective weights is the center

of the smallest enclosing circle that contains each of these k circles. �

Proof: Given the weight and agent location, the locus of points that can be

reached from the agent location in fixed time constitutes a circle with center at

the agent location and radius equal to its weight. This circle indicates all possible

initial locations for an agent to arrive at Pi in time ti ∀i ∈ {1, 2, · · · , k}.

Given the initial locations of agents, TORP can be computed as the center

of the smallest enclosing circle containing all the initial locations, as given by

Theorem 6. Consequently, TORP for this problem can be computed as the center

of the smallest enclosing circle that contains all the circles constructed at agent

locations. Q.E.D.

We now present Lemma 10 which restricts the number of agent locations that

constitute the smallest enclosing circle. However, the following mathematical facts

are necessary in constructing the proof for lemma. For any two circles centered at

C1 and C2 with radii r1 and r2, circle at C1 is contained in circle at C2 if (6.2) is

satisfied. Additionally, the locus of points P where two agents located at P1 and

P2 (with weights t1 and t2) arrive simultaneously turns out to be a hyperbola as

82

given by (6.3), where c is a constant.

C1C2 ≤ r2 − r1 (6.2)

PP1 + c× t1 = PP2 + c× t2 (6.3)

Lemma 10 The smallest enclosing circle Ct for k circles with non-zero radii re-

quires a maximum of three circles for its construction. The remaining circles either

lie in the interior of Ct or are tangential to its boundary. �

Proof: It follows from (6.1) that the center of the smallest enclosing circle is

located such that the associated agents arrive at it simultaneously. Such a center is

the point of intersection of hyperbolas constructed with the locations of associated

pairs of agents as given by (6.3). However, only a maximum of three hyperbolas

can intersect at a single point in the plane (excluding degeneracy) which proves

the first statement of the lemma.

Among all the points of intersections of hyperbolas, the point (say Rt) which

maximizes the rendezvous time (Tt) is the TORP. Further, this rendezvous time

is the radius of the smallest enclosing circle, centered at Rt. It thus follows from

Theorem 7 that every other circle is contained (internal or tangential) in the circle

Ct. Q.E.D.

We utilize Theorem 7 and Lemma 10 to present an algorithm that accepts the

agent locations and weights as input and computes the TORP. We adopt an incre-

mental approach by beginning with the largest circle, identifying the circles that

lie external to it and gradually increasing its radius to enclose all the remaining

circles.

Algorithm Min Time Weights

INPUT: Locations of all k agents P1, P2, · · · , Pk and their corresponding weights

t1, t2, · · · , tk.

OUTPUT: Time Optimal Rendezvous Point (TORP), Rt and the time for ren-

dezvous, Tt.

Step 1: Construct k circles with centers at agent locations and radii equal to

their weights. Initialize an empty set S.

Step 2: Evaluate Rt and Tt as the location and weight of the agent with the

83

highest weight and add its location to set S.

Step 3: For a circle Ct centered at Rt with a radius of Tt, use (6.2) to identify

the agent whose circle is not contained in Ct. Add the agent location to S.

If all agents’ circles are contained in Ct, output the current values of Rt and Tt.

Stop.

Step 4: Evaluate Rt and Tt using Step 5 on the set S and return to Step 3.

Step 5: If S has only two agent locations, evaluate Rt as the point of intersection

of line segment joining them and the hyperbola constructed using (6.3).

If S has three agent locations, overwrite Rt with the point of intersection of three

hyperbolas constructed using (6.3) and Tt with its corresponding weight.

If S has four agent locations, identify the triplet whose point of intersection of hy-

perbolas has the highest weight. Overwrite Rt with this point, Tt with its weight

and remove the remaining agent location from S. �

P1t1P2 P4Rtt2 t4t3

t7 t6
P3

P5P7 P6 Ct

Figure 6.4: TORP (Rt) for 7 agents with non-zero weights at their locations

Fig. 6.4 illustrates Algorithm Min Time Weights for 7 agent locations

with their corresponding weights. The algorithm begins by constructing k circles

as shown and picks agent P2 that has the maximum weight. Step 3 of the algorithm

identifies that the circle at P3 lies outside the previous circle at P2. Set S currently

includes P2 and P3 which is used in computing and updating TORP in Step 5.

Further iterations slowly increases the radius Tt of the smallest enclosing circle

eventually computing Ct as shown. The final elements of the set S are P2, P4 and

P6 (shown in blue) which are used in constructing Rt in Step 5.

84

Remark 11 The enclosing circle grows in size as it absorbs one circle after an-

other. However, it is worth noting that a circle that has been absorbed does not exit

the enclosing circle while the latter attempts to absorb the circle due to another

agent. In other words, the size of the enclosing circle increases monotonically until

all the remaining agents’ circles are enclosed. Algorithm Min Time Weights

utilizes this to improve its complexity and the proof for the same is based on Elzinga

and Hearn (1972).

6.2 Algorithm to Compute TORP for Multiple

Agents Amidst Static Obstacles

In this section, we compute the point that minimizes the total time for rendezvous

for k agents as they negotiate n polygonal obstacles. In order to minimize the time

for travel between two locations amidst obstacles, an agent computes and follows

the shortest path from one location to another. This shortest path amidst n

polygonal obstacles can be efficiently computed using the algorithm presented in

Hershberger and Suri (1999). We use this along with the results presented so far

to develop the following Theorem 8 that computes the TORP.

Consider k agents denoted by P1, P2, · · · , Pk moving amidst n polygonal ob-

stacles. Let R be the rendezvous point computed using Algorithm Min Time

Weights with initial locations and zero weights. Let Q1, Q2, · · · , Qk represent

the agent locations before arriving at R when the agents take the shortest path

from their initial locations (to R). Let t1, t2, · · · , tk be the corresponding time

taken by each agent.

Theorem 8 TORP (Rt) for these k agents amidst n obstacles is the rendezvous

point computed on the locations Q1, Q2, · · · , Qk with their corresponding weights

t1, t2, · · · , tk, using Algorithm Min Time Weights. �

Proof: The minimum time for rendezvous for k agents in the absence of obstacles

occurs at R, as given by Theorem 6. Any deviation from the path to R increases

the time for rendezvous. Since the deviation is minimum along the shortest path

85

in the presence of obstacles, the locations given by Q1, Q2, · · · , Qk are common to

the paths taken by agents to arrive at both R and the TORP, Rt.

Further, the paths from agent locations Q1, Q2, · · · , Qk to either R or Rt are

not obstructed by any obstacle. It follows from Theorem 7 that the center of the

smallest enclosing circle with corresponding weights would have a lower time for

rendezvous than any other point in the plane, including R; which concludes that

the center is indeed TORP (Rt). Q.E.D.

P1
P2

R P3O1
O2

O3
(a) Obstacles on the paths to R

P1
P2

Rt P3O1
O2

O3Q1 Q2
Q3

(b) TORP obtained using Theorem 8

Figure 6.5: Computation of TORP for three agents amidst three obstacles

Fig. 6.5 illustrates rendezvous of three agents amidst three polygonal obsta-

cles. The agents begin their attempt at rendezvous by computing the TORP using

Algorithm Min Time Weights with zero weights at initial locations. The ob-

structions on the path to this rendezvous point R are shown in Fig. 6.5(a). In

order to negotiate these obstacles, the agents have to deviate from their straight

line path to R. Such a deviation necessitates a recomputation of TORP as indi-

cated in Fig. 6.5(b).

The agents arrive at locations Q1, Q2 and Q3 and recompute TORP using

Algorithm Min Time Weights with weights equal to the time elapsed by

the agents to arrive at these locations. The weights are represented by the radii

of dashed circles. The new rendezvous point (Rt) that minimizes the time for

rendezvous and the corresponding smallest enclosing circle are illustrated in Fig.

6.5(b). This is condensed into the following algorithm which is based on Theorem

8. An illustration for higher number of agents is presented via an experiment in

section 6.4.

86

Algorithm Min Time Obstacles

INPUT: Locations of all k agents and n polygonal obstacles. Weights at initial

locations.

OUTPUT: Time Optimal Rendezvous Point (TORP), Rt and the paths of all

agents to Rt.

Step 1: Compute the rendezvous point R for k agents using their locations and

corresponding weights with the help of Algorithm Min Time Weights .

Step 2: Compute the shortest paths for all agents from their initial locations to

R using Hershberger and Suri (1999). Identify Qi as the last vertex of obstacle

visited by Pi before arriving at R along the shortest path, where i ∈ {1, 2, · · · , k}.

If the shortest path for an agent Pi is not obstructed, identify Qi as the agent

location Pi.

Step 3: Compute TORP Rt using Algorithm Min Time Weights with lo-

cations {Q1, Q2, · · · , Qk} and weights equal to the time taken by each agent to

travel from Pi to Qi. Output Rt and corresponding shortest paths leading to Rt.

�

Algorithm Min Time Obstacles is not only useful in the initial locations

of the various agents. It can also be employed for recomputation of TORP after

the agents have moved some distance from their initial locations. However, the

usefulness of Algorithm Min Time Obstacles is limited to the setting where

we have only static obstacles. This is expressed by Theorem 9.

Theorem 9 Recomputation of TORP (Rt) using Algorithm Min Time Ob-

stacles at intermediate locations of agents after they have traveled for a finite

time, does not affect its location. �

Proof: Time optimal rendezvous point is computed by finding the point of inter-

section of hyperbolas (given by (6.3)) at agent locations while taking their weights

into consideration. This corresponds to Step 5 of Algorithm Min Time Weights .

Let the recomputation be performed at intermediate locations when every agent

has traversed a finite time tf . A constant factor of tf thus appears in weights of

agent locations as given by (6.4).

PP1 + c× (t1 − tf) = PP2 + c× (t2 − tf) (6.4)

87

Since (6.4) evaluates to (6.3), there is no change in the point of intersection of

hyperbolas and thus the TORP remains unaffected. Q.E.D.

6.3 Extension to Handle Moving Obstacles

In an industrial setting, the agents would have to negotiate obstacles like such

as Automated Guided Vehicles (AGVs) or humans, en route to TORP. It is thus

of interest to design an algorithm to ensure rendezvous, even when one or more

agents are obstructed by such moving obstacles.

Whenever an agent is obstructed by a moving obstacle, the former waits until

its path is cleared. The time spent by an agent in waiting is not uniform across

all agents. Thus, Algorithm Min Time Obstacles is not adequate to handle

the case where moving obstacles are also present. It is necessary to recompute

the TORP by taking into account the travel times of various agents and the time

elapsed in waiting. The modified scheme for computation of TORP amidst moving

obstacles is given by Algorithm Moving Obstacle Handling next.

Algorithm Moving Obstacle Handling

INPUT: Initial locations of all agents and static obstacles. Time Optimal Ren-

dezvous Point (TORP) computed with only the static obstacles, the paths of all

agents to TORP (Rt) and distance sensor information.

OUTPUT: Rendezvous of all agents.

Step 1: Allow each agent to proceed on its path to Rt until faced by a moving

obstacle or the agent arrives at Rt. If all agents arrive at the same location, Stop.

Step 2: If a moving obstacle is detected, halt the agent and communicate the

current location of the agent along with the time elapsed in traveling and waiting,

at fixed intervals. Request and receive this information from all other agents.

Step 3: Recompute and update the TORP (Rt) with the current locations

of all agents and their corresponding weights (time elapsed), using Algorithm

Min Time Obstacles .

Step 4: Compute and update the shortest paths for all agents from their current

locations to Rt (computed in Step 3). Proceed to Step 1. �

88

6.4 Experimental Validation of Algorithms

The hardware realization of algorithms presented thus far is achieved with the

help of small differential drive mobile robots discussed in section 3.5. Each robot

is equipped with an Arduino UNO board featuring an ATmega328P microcon-

troller to control the motion of robot and to compute the TORP with the location

information on agents and obstacles. The communication between agents for ex-

changing information on location and elapsed time is achieved with the help of

Xbee-PRO RF modules that operate at 2.4 GHz.

Detection of moving obstacles is achieved with the help of ultrasonic range

detection sensors mounted on micro-servo motors. The localization of robots is at-

tributed to MOC7811 speed sensor mounted on each wheel of the robot. MOC7811

is an inexpensive opto-coupler that provides adequate accuracy while eliminating

any necessity for a motion capture system.

Various experiments have been performed to validate the proposed algorithms,

two of which are presented here. Fig. 6.6 illustrates the first experiment where

five agents are considered for rendezvous amidst two rectangular obstacles. Agents

employ Algorithm Min Time Obstacles to compute the TORP, Rt. Algo-

rithm Moving Obstacle Handling is then used by the agents to travel along

their shortest paths to their destination Rt. Intermediate locations of agents are

shown in Fig. 6.6(a) while their rendezvous is illustrated in Fig. 6.6(b).P1
P2 P3

P4P5
O1 O2Rt

(a) Agents proceed towards Rt

P1
P2 P3

P4P5Rt
(b) Rendezvous of agents at Rt

Figure 6.6: Time-optimal rendezvous of five agents amidst two obstacles

In the second experiment (Fig. 6.7), we allow an AGV to obstruct the path

of agent P3 as three agents attempt to rendezvous at R0
t in the presence of one

polygonal obstacle. The ultrasonic sensor on agent P3 detects the AGV as a mov-

ing obstacle and invokes Step 2 of Algorithm Moving Obstacle Handling .

89

Table 6.1: Comparison of various features of proposed algorithms with prior works
involving time-optimal rendezvous

Criteria
→

Static and
Moving

Obstacles

Identical
Agents

Hardware
Realization

Complete
Location

Information
Setter and Egerstedt (2014)
Chunhe and Zongji (2014)

Brown et al. (2011)
No No No Yes

Notarstefano and Bullo (2006)
Bhatia and Frazzoli (2008)

No Yes No Yes

Kunwar et al. (2005) Yes One Yes No
Proposed Yes Yes Yes Yes

Once the current location information and the waiting times of all agents are com-

municated to each other, TORP is recomputed. While the agents P1 and P2 keep

moving to the current TORP , agent P3 requests for recomputation until the AGV

clears its path. It can be observed that the final rendezvous occurs at R1
t .P1

P2
P3RtAGV

O1
0

(a) P3 detects moving obstacle

P1
P2

P3Rt
AGV1O1 Rt

0

(b) Rendezvous at R1
t

Figure 6.7: Time-optimal rendezvous for three agents amidst one static and one
moving obstacle (AGV)

Experimental results reflect the ability of proposed algorithms to quickly com-

pute the TORP on just a microcontroller without any support from a central hub.

The computation of shortest path from agents’ locations to TORP is also paral-

lelizable by allowing each agent to perform its own computation. Additionally,

when handling a moving obstacle, the computation is performed in fixed intervals

to further minimize the waiting times of agents.

6.5 Comparisons

The algorithms presented in this chapter have been compared with prior work

in Table 6.1. Prior work considering obstacles is, in general, limited. While

there have been attempts to achieve time optimal rendezvous in cluttered en-

vironments Kunwar et al. (2005), the study (and experiments) are limited to a

single autonomous vehicle attempting a rendezvous with moving targets. In order

90

Table 6.2: Comparison of various aspects of experimental setup

Criteria ↓ Kunwar et al. (2005) Proposed
Number of agents 2 k where r ∈ Z+, r ≥ 2

Communication with
Central Computer

Yes No

Localization CCD Camera On-board Encoders
Processing
Support

Central Host
Computer

On-board
Microcontroller

to enhance our algorithm to handle moving obstacles, we allow the agents to com-

municate when faced by a moving obstacle and recompute the TORP by taking

into account their waiting time, as discussed in section 6.3. Table 6.2 presents a

comparison of the key features of experiments in our work and in Kunwar et al.

(2005).

6.6 Summary

In this chapter, we have explored time optimal rendezvous of multiple agents. In

the next chapter, sensor specific rendezvous in the absence of location information

is presented. Rendezvous of two heterogeneous agents, namely a bipedal robot

and a mobile robot, is shown via experiments.

91

CHAPTER 7

RENDEZVOUS OF HETEROGENEOUS

ROBOTS AMIDST UNKNOWN OBSTACLES

WITH LIMITED COMMUNICATION

In the earlier chapters, we have studied rendezvous amidst obstacles and various

constraints. In this chapter, we consider sensor-based rendezvous of a pair of

robots. In particular, we study rendezvous of a pair of mobile robots equipped

merely with infrared (IR) beacons amidst obstacles. While rendezvous has been

explored in general in the literature, work on rendezvous with specific constraints

on the hardware carried is limited. Further, analysis of the capabilities of the hard-

ware (for communication, sensing) to facilitate rendezvous in an environment with

obstacles has been scarce. Our algorithm is applicable to heterogeneous robots as

well and we report experiments on rendezvous with a pair of heterogeneous robots

fabricated locally. Our experiments involve a mobile robot and a bipedal robot.

There are several advantages of rendezvous using merely IR beacons. First, no

knowledge of initial positions of the robots is required. Second, precise knowledge

of the location of obstacles in the environment is also not required. We assume

point-size (or small) robots and determine paths for the robots based on reflection

of beams from the IR beacons. For larger-size robots, collision avoidance can be

handled using additional sensors (for example, ultrasonic sensors). Further, with

the IR beacon approach, one can devise an algorithm that obviates the need for

additional hardware for communication (such as bluetooth) even if both the robots

move to achieve rendezvous.

A challenge posed by IR is the ambience. The beams tend to reflect from the

surrounding walls and create an illusion of an additional robot in the vicinity. One

solution to this problem is manipulation of the ambience by absorbing the waves

instead of reflecting them. However, robots usually find their place in laboratories

amongst other devices (and obstacles) so it is difficult to manipulate the ambience.

The proposed approach addresses this challenge by adapting to the environment

via calibration to the surroundings. In particular, the intensity of the lighting

determines a threshold value to be set and this corresponds to determining if the

signals from the IR beacons need amplification. Experiments on rendezvous of a

biped and a mobile robot (fabricated in our laboratory) are presented to validate

the proposed approach. This work has been reported in Vundurthy et al. (2016).

7.1 Assumptions and Terminology

We begin with a few assumptions necessary in developing algorithms for this

problem. We then present the terminology required.

7.1.1 Assumptions

1. The robots operate in an indoor environment.

2. There are six transmitters on each robot, each having a transmission angle
of 60◦, thus covering the entire 360◦.

3. There exists at least one path between the two robots to rendezvous.

7.1.2 Terminology

While the transmitters cover 360◦, the entire area within the boundary does not

necessarily receive the signal directly from the transmitter. Since we are working

with IR beams, the signal may reflect off of many surfaces before it becomes

incident on a given region. We represent regions based on the number of reflections

a ray undergoes before reaching it.

The space in which the robots are operating in the presence of obstacles and

polygonal walls is denoted by ‘S’. The subset of ‘S’ over which the IR beam reaches

without any reflection is termed as ‘Zone 0’. The area over which the IR beam

reaches after one reflection from any of the walls or obstacles is termed as ‘Zone

1’. The receiver can detect an IR beam only above a certain intensity. Thus, the

maximum number of zones will depend on the maximum number of reflections

from various surfaces, walls and obstacles before the incident IR beam loses its

93

minimum detectable intensity. This value of minimum detectable intensity will

depend on the intensities of other light sources in the room along with the kind

of reflective surfaces. This is termed as the Threshold value (Tv). The maximum

value of zone numbers is defined as the ‘Reflective index’ and is denoted by Rn.

We denote the robots by A and B. Both the robots A and B have transmitters

and receivers which can cover the entire 360◦ range. The transmitters on A and

B are denoted by TA and TB respectively. The receivers on A and B are denoted

by RA and RB respectively. We now present the key results relating to the IR

transmission based on which the rendezvous takes place.

7.2 Key Results Pertaining to IR Transmission

Lemma 11 The change of zone can happen only due to the obstruction of IR

beam by an obstacle. �

Proof: In the absence of any obstacles, the IR beam with a 360◦ range of emission

covers the entire room with its rays even before the rays hit any walls. When an

obstacle is added, the area behind the obstacle as seen from robot A ‘becomes

dark’ with respect to IR beam. However, the reflections from other walls are

present and a part of this area lights up. This area is Zone 1. The border between

Zone 0 and Zone 1 is thus due to the vertex/edge of the obstacle. Q.E.D

Remark 12 Fig. 7.1 gives an example of various zones in a rectangular room.

The robot A (with its transmitters) is placed at (2,2) as indicated in the figure. A

line segment obstacle is considered to be extending from Ob1 to Ob2. The area in

green is Zone 0, area in blue is Zone 1 and area in red is Zone 2. Lemma 11 thus

follows from the figure where the boundary of Zone 0, 1 and 2 are marked by lines

extending from the vertices of the obstacle. �

For describing the effect of the IR beams, we assume that robot A is transmit-

ting while B is receiving. The second robot B is placed at some arbitrary location

in the room. Depending on the zone that it is placed in, the action it should

94

Figure 7.1: Various zones for a transmitter placed at A in the presence of a line
segment obstacle Ob1Ob2

take will vary. However, we are using only an IR receiver as the sensor and thus

the robot itself has no knowledge of the zone it is in. The receiver is capable of

recording the direction in which the rays hit it. This direction is then used to

orient itself and take further steps. We now present another result that is useful

in the development of our algorithm.

Lemma 12 All the consecutive zone numbers till Rn (the reflective index) need

not be present in S. �

Proof: The proof is by contradiction. In particular, assume all the consecutive

zone numbers till Rn are present in a region S. Now consider the region shown

in Fig. 7.2. The boundary of region S and the location of obstacle are such that

there cannot exist any subset of S that qualifies as Zone 1. Thus S only contains

Zone 0 and higher zones. The reflective index Rn is 3 in this case. Thus, all the

consecutive zones do not exist in S. Q.E.D.

Theorem 10 In a given region S, let there be n zones with k deficient zones. The

zones in increasing order are adjacent to each other and IR beam enters a zone i

through one of its immediate (prior) zones. �

95

Figure 7.2: Absence of Zone 1 in this setting

Proof: Let the zones be numbered Z1, Z2,Zi−1, ...Zi+1, ...Zn with k missing

zones. Let a polygonal region A be defined such that the polygonal edges of this

region are due to the reflections sliding through the edge or vertex of an obstacle.

It follows from Lemma 11 that the IR beam that slides along the vertex of an

obstacle divides the region into two halves with different zones. One half consists

of rays incident from beyond the obstacle and thus with a zone number say Zi.

The other half cannot have any rays incident in the previous manner due to the

obstacle itself. However, IR beam comes to this region due to multiple reflections

from other walls or obstacles. This gives the other half region a new zone number

Zj. Thus, by construction, i < j. Additionally, if there is more than one way of

approaching this second region like Zj1, Zj2,, we define the zone number with

the lowest of these values. However, the lowest of these values will still be greater

than Zi. Thus, if Zk−1 and Zk+1 are consecutive zones (in other words zone Zk

does not exist), they have to be adjacent to each other. The second statement of

Theorem 10 is a consequence of this result. Since zones with increasing zone value

are adjacent to each other, any ray entering a zone with higher value will have to

come through a zone with lower value. Q.E.D.

Remark 13 Taking Fig. 7.1 as an example, let the region A be defined by the 4

P7P11P12 . It can be noticed from the figure that each edge of A is a consequence of

96

IR beam grazing along the vertex of the obstacle. Additionally, these beams divide

the space into two halves one from each zone. The zone in blue is Zone 1 and

zone in red is Zone 2. In the case of any overlap of zones, the zone is given a

number with lower value. Thus the regions P2P5P12P11, P5P10P12, P7Ob2Ob1P11

are reverted back to Zone 1 in spite of being capable of having an IR beam with

two reflections reaching it.

It follows from Lemma 11 and Theorem 10 that the IR beam grazing the vertex

of an obstacle can create a change of zones in a consecutive manner. Thus a robot

can always move from Zone Zi to Zi−1 (if it exists or else the next lower zone) in

a straight line path.

7.3 Proposed Algorithm for Rendezvous

The proposed algorithm involves adaptation of the robot to the surroundings es-

pecially in view of IR beacons on-board the robot. Further, we need an algorithm

that determines the direction to be chosen for motion of a robot. Therefore, sub-

algorithms for adaptation and action (direction determination) are presented first.

This is followed by the main algorithm for rendezvous.

7.3.1 Adaptation Algorithm

In the rendezvous problem with IR beacons, as the robots plan and move towards

each other, the transmitters and receivers of the robots should not interfere with

each others’ functions. The adaptation algorithm helps to know the bound on time

after which a signal would die down (go below the detectable level of the receivers).

With the help of this bound, we can turn on the transmitter of one robot along

with the receiver of another. After the time given by the adaptation algorithm,

the receiver of one robot can be turned on along with the transmitter of another.

In this way, by alternating their signals and understanding the directions, the two

robots achieve rendezvous. Another common issue in dealing with IR beacons

is the ambient lighting conditions. Depending on the illumination of the room

and the reflective surfaces, the IR beam can die down sooner. With the help of

97

adaptation algorithm, the receivers are normalized to a certain value. This helps

the beacons to adapt to any given ambient lighting conditions.

As mentioned earlier, the two robots A and B are each assumed to have six

transmitters and six receivers to cover the entire range of 360◦. The IR beam

originating from these transmitters reflects off various obstacles, walls and other

surfaces. If the receiver of the same robot is turned on during this time, the re-

flections create an illusion of another robot being present in the direction of the

obstacle or wall.

Algorithm Adaptation

Input: minimum distance ‘ε’ between the two robots after rendezvous in cm

Output: Tv(A) and Tv(B)

Step 1: For each of the robots A and B, repeat the Steps 2-9

Step 2: Divide 0◦ to 360◦ into six directions

Step 3: For each of the six transmitting directions of the current robot, repeat

the steps 4-9

Step 4: Turn on the transmitter and all the six receivers

Step 5: Turn off the transmitter with the first ping in any of the six receivers

Step 6: Measure the number of pings at all six receives and store them in

P1, P2, · · · , P6

Step 7: Measure the time taken (from the first ping) and the direction for the last

ping and store it in ti where i is the current direction number of the transmitter

Step 8: Calculate φ as the average of P1, P2, · · · , P6

Step 9: Compute the threshold value for the current direction with the help of

the following formula:

Tvi =
φ(1 + 1

ε
)

2
(7.1)

98

where φ is computed as given in Step 8 and

ε is the desired distance (in cm) between the two robots after rendezvous

Step 10: Compute Tv(A) and Tv(B) as the average of Tv1(A), · · · , Tv6(A) and

Tv1(B), · · · , Tv6(B) respectively

Step 11: Return Tv(A) and Tv(B)

Remark 14 The adaptation algorithm removes the necessity of centralized control

and any form of communication between the two robots. The robots now work in

the intervals of Tv(A) and Tv(B) thus ensuring that there is no signal overlap.

7.3.2 Algorithm for Determining Direction of Turn

After calibrating the ambience in a given room, we determine the direction of mo-

tion. The direction of travel for each robot is determined by the direction in which

the IR beam from the other robot hits it first. We now present Algorithm Action

that determines the direction of the next step for both the robots.

Algorithm Action

Input: Threshold values Tv(x) and Tv(y); x is the transmitter robot and y is the

receiver robot

Output: The direction of movement for x and y; Dx and Dy respectively. The

time of travel for opposite IR beams from x and y; Rx and Ry respectively.

Step 1: Initialize all transmitters on x and all receivers on y.

Step 2: Turn off the transmitter on x after time Tv(x).

Step 3: Wait for the first ping of IR pulse on any one of the receivers of robot

y. Store the direction in Dy and the time after initialization in Ry. Turn off the

receiver on robot y.

99

Step 4: Initialize all transmitters on y and all receivers on x

Step 5: Turn off the transmitter on y after time Tv(y)

Step 6: Wait for the first ping of IR pulse on any one of the receivers of robot

x. Store the direction in Dx and the time after initialization in Rx. Turn off the

receiver on robot x.

7.3.3 The Rendezvous Algorithm

The algorithm first detects if the minimum distance ‘ε’ of rendezvous given as an

input is feasible or not. If it is not, it requests to restart the algorithm with a new

‘ε’. If it is, it begins with the Algorithm Adaptation which is non-recursive.

Once the threshold values are available, Algorithm Action is employed to move

the robots towards the point of rendezvous.

Algorithm Rendezvous

Input: The diagonal length of the robots A and B, lA and lB respectively. The

minimum distance between the two robots after rendezvous.

Output: Report if rendezvous is not possible due to improper ‘ε’ else achieve

rendezvous.

Step 1: If ε < (lA + lB) then output that a collision is imminent. Else proceed to

Step 2.

Step 2: Compute (Tv(a),Tv(B)) using Algorithm Adaptation

Step 3: Initialize two variables RA and RB to infinity and perform Steps 4 and 5

while individual threshold values of A and B are smaller than RA and RB. Else

proceed to Step 6.

Step 4: Compute (DA,DB,RA,RB) using Algorithm Action

Step 5: Move robot A in the direction of DA by lA and robot B in the direction

100

of DB by lB

Step 6: Initialize the Ultrasonic sensors on both robots A and B and detect the

distance between each other in variables dA and dB. Note that dA=dB.

Step 7: While dA > ε, move robot A in direction dA by lA and B in direction of

dB by lB

Step 8: Return robots achieved rendezvous

Some arguments regarding correctness of the algorithm are as follows. In the

adaptation phase, a simple averaging technique is used to compute the levels

beyond which the IR beam is detectable without any interference from ambient

light sources. In the second part of the algorithm, rendezvous is accomplished in

an iterative manner. It follows from Theorem 10 that an IR beam enters the region

of a robot through its prior zones. Thus, turning the robot towards the direction

in which the IR beam is incident and moving it by a fixed distance guarantees

that the robot moves in the direction of decreasing zones. The comparison with ε

ensures that the algorithm terminates in a finite number of steps.

The zones change due to the vertex or edge of an obstacle as given by Lemma

11. Therefore, it is possible that the robot goes and hits the obstacle either at

its edge or its vertex. To avoid this, we use an iterative algorithm. An iterative

algorithm would change the direction of the robot as soon as it changes zones thus

making sure that it never hits an obstacle or a wall. This can be observed from

Fig. 7.2. As the robot moves from Zone 2 to Zone 1, the robot gets its IR beam

from a different direction altogether. For example, if the robot is now located

in the triangle 4 P2P11Ob1 which is of Zone 1, the IR beam would hit the wall

of PaPd and reach this zone. So, the algorithm would direct the robot to move

towards the wall PaPd. However, as soon as the robot crosses the imaginary line

P2Ob1, it enters into zone 0. The IR beam would now be incident directly from

A. Thus the robot orients itself towards A and moves until Rendezvous.

The dynamics of the robots do not form a part of the algorithm. Thus, robots of

heterogeneous nature can be used with this algorithm. Since Algorithm Rendezvous

101

Figure 7.3: Pololu IR Transceiver used for the experiment

ensures that the minimum distance for rendezvous is greater than l1 + l2(the sum

of diagonal lengths of the two robots in the traveling direction), collision of robots

is also not an issue.

7.4 Experimental verification

In this section, we present the results of our experiments with a bipedal robot and

a mobile robot. The mobile robot has two differential drive wheels at the back

and two castor wheels at the front. The robot can handle a payload of 5 kg and

is powered by 1000 rpm DC motors. A Pololu driver board is used to control the

robot using an ATMEGA 32 micro controller. The bipedal robot has two feet and

is powered by HSR-5990TG servo motors and has an ATMEGA 32 microcontroller

for processing. We use Pololu IR transmitter-receiver pairs (transceivers) for the

IR beacons. Each Pololu transceiver uses six transmitters and four receivers. Fig.

7.3 gives a picture of the hardware. Each transmitter covers 60◦ while each receiver

covers 90◦.

The details of the experiments are as follows. The receivers and transmitters

on both the robots first go through the adaptation mode. Having calculated Tv, for

both the robots, they individually start the transmission and reception of signals

in pre-allocated time intervals.

The receivers of the Pololu IR transceiver are labelled as North, East, South

and West. The robots rearrange the signals coming from various directions to one

of these four directions and then go on with the algorithm.

The step length of the biped is just 5 cm while the mobile robot can cover 100

cm in a couple of seconds. Due to this huge difference in speeds, we designed the

biped to transmit and receive at a much faster rate and update its direction as

compared to the mobile robot. Thus the biped moves continuously until there is

102

(a) Mobile robot prior to turn (b) Biped and mobile robot closer

(c) Mobile robot after negotiating an obstacle (d) Rendezvous achieved

Figure 7.4: Different positions leading to rendezvous

a necessary rotation.

It can be noted that the IR beacons on both the robots are placed at the same

level from the ground to ensure proper transmission and reception of signals.

Fig. 7.4 gives various locations of the robots before they could achieve ren-

dezvous. The mobile robot identifies the direction of IR rays hitting it from its

front. Thus it moves front by its fixed distance l1 and reaches the position in Fig.

7.4(a). The rays continue to hit it from the same direction and thus the robot

moves further. It then rotates right and moves closer to the biped. When the

mobile robot is close to the cardboard box, the rays come from around the box.

The robot now rotates again toward the direction of the incident signal which is

to its left. This is shown in Fig. 7.4(b). It now moves forward by its prescribed

amount to get in complete view of the biped. However, the biped now stands to

its right and thus the robot turns right facing the biped. This is shown in Fig.

7.4(c). Fig. 7.4(d) shows the movement of the two robots to their final position.

103

7.5 Summary

In this chapter, we have considered the problem of rendezvous between a pair

of robots with limited communication. In particular, we have assumed that the

robots carry only IR beacons.We have discussed issues pertaining to IR signals

and derived some important results. We have then presented an algorithm for

rendezvous taking care of the ambience. We have also described experiments on

rendezvous between a mobile robot and a bipedal robot fabricated indigenously.

104

CHAPTER 8

CONCLUSIONS

In this thesis, we investigate rendezvous of mobile agents at an optimal location

amidst various constraints. The constraints are motivated by the type or nature

of agents and the task they intend to carry out. Robots designed to exchange and

replenish supplies as they traverse to various sites are concerned with their indi-

vidual energies and a minimax distance constraint is applicable here. Similarly,

robots designated to meet after fixed intervals of time would attempt to minimize

the collective distance travelled thus incorporating a constraint on the total Eu-

clidean distance travelled. Finally, robots operating in hazardous environments

would want to achieve rendezvous with limited information from fellow agents and

in minimum time.

We address each of the constraints and develop efficient geometric algorithms

that compute an optimal location for rendezvous. Throughout the thesis, we deal

with obstacles that either obstruct the paths of various agents or intelligently at-

tempt to capture one of the agents to prevent rendezvous. The thesis also presents

experiments on custom-fabricated robots. We show that the algorithms developed,

while involving complex tasks such as computing intersections of hyperbolas or

constructing graphs to compute shortest paths, can be implemented on robots

equipped merely with microcontrollers and without any external memory.

In this chapter, we provide a summary of the main contributions and discuss

possibilities for future work.

8.1 Contributions of the Thesis

The first contribution of the thesis is development of hardware-efficient algorithms

for computation of an optimal location for rendezvous with respect to the minimax

distance criterion. The chapter (Chapter 3) introduces the notion of last-turn

location and defines a weighted minimax distance constraint when the agents

have travelled a finite distance prior to arrival at a given location. This finite

distance is referred to as the weight on a location. We present an algorithm that

computes the rendezvous location for k agents amidst n polygonal obstacles by

using a result that limits the rendezvous location to the vicinity of the minimax

location computed in the absence of obstacles. Additionally, we illustrate the

hardware efficiency of the algorithms via experiments on mobile robots supported

by only a microcontroller (and no external memory). A detailed description of

the algorithm and an efficient way to adapt the algorithm to a microcontroller is

presented in Vundurthy and Sridharan (2019).

Following the minimax distance constraint, we discuss computation of an op-

timal location with respect to the minsum distance constraint in Chapter 4. Con-

trary to the prior observation, the rendezvous location for minsum distance con-

straint cannot be restricted with respect to its counterpart computed in the ab-

sence of obstacles. We thus resolve to an incremental algorithm and show that

the two passes, one in the increasing and decreasing order of their distances from

minsum location are sufficient to compute the optimal rendezvous location. Once

again, we illustrate the algorithm with the help of experiments on mobile robots.

Having discussed two variations of the distances constraints, Chapter 5 explores

the effect of an intelligent obstacle (or an adversary) that deliberately tries to

prevent rendezvous of a pair of agents. We equip the adversary with a vision sensor

and allow communication only among the pair of agents. We discuss the notion

of dominance curves and safe regions to compute an optimal meeting location if

rendezvous is indeed feasible. Similar to prior results, we illustrate the algorithms

via implementation on mobile robots. The processing support for the adversary is

provided by a Raspberry Pi module while a Pi camera serves as the vision sensor.

No additional support via a PC is necessary to perform the analysis of the image

captured. We discuss various aspects of experiments including occlusion of vision

sensor by an agent.

In addition to the two variants of distance constraints, we explore rendezvous

with a constraint on time lost in commute in Chapter 6. We compute the optimal

location, termed as the Time Optimal Rendezvous Point (TOPR), both in the

106

absence and presence of static obstacles. We show that the development of an

efficient algorithm allows for a quick re computation of the rendezvous location

when one or more of the agents are blocked by a moving obstacle. We support

the efficiency of the algorithms with experiments on mobile robots and illustrate

the role of moving obstacles via an AGV (Automated Guided Vehicle). This work

has been reported in Vundurthy and Sridharan (2018). Further, we describe a

sensor-specific rendezvous that involves two heterogeneous agents (mobile robot

and a bipedal robot) equipped with a Polulu IR beacon for identification of their

respective heading directions. A detailed description of the solution methodology

and experimental setup is provided in Vundurthy et al. (2016).

8.2 Extensions and Future Work

The work discussed in this thesis is focussed on developing optimal locations in

the plane for rendezvous. The minsum distance constraint deals with three and

four agents for rendezvous since the solution for more than four agents case (even

in the absence of obstacles) requires an iterative procedure. It is worth exploring

the location for rendezvous, with a small tolerance if necessary, that computes the

location for an arbitrary number of agents.

When handling an adversary, it is of interest to explore how multiple delivery

agents are handled by a single adversary. Exploring the need of the adversary for

a dominant strategy might shed some light on the evasive manoeuvres adopted by

the rescue and delivery agents.

Further, the time optimal rendezvous point assumes identical agents while the

agents start simultaneously from the start location. Additional work on computing

this location considering agents travelling with non-identical speeds might be a

potential enhancement to the current strategy.

Finally, the sensor specific rendezvous can be extended to a three dimensional

setup since the Polulu IR beacon sensor puts no such restrictions.

107

PUBLICATIONS FROM THIS THESIS

[1] B. Vundurthy and K. Sridharan, “Multiagent Gathering With Collision

Avoidance and a Minimax Distance Criterion−Efficient Algorithms and Hard-

ware Realization,” in IEEE Transactions on Industrial Informatics, vol. 15, no. 2,

pp. 699-709, Feb. 2019. Available on IEEEXplore.

[2] B. Vundurthy and K. Sridharan, “Time Optimal Rendezvous for Multi-

Agent Systems Amidst Obstacles - Theory and Experiments,” IECON 2018 - 44th

Annual Conference of the IEEE Industrial Electronics Society, Washington, DC,

2018, pp. 2645-2650. Available on IEEEXplore.

[3] B. Vundurthy, A. More, S. V. V. Raju and K. Sridharan, “Rendezvous of

heterogeneous robots amidst obstacles with limited communication,” 2016 Indian

Control Conference (ICC), Hyderabad, 2016, pp. 347-353. Available on IEEEX-

plore.

108

REFERENCES

1. Abelson, H. (1978). Lower bounds on information transfer in distributed compu-
tations. Proc. of the IEEE 19th Annual Symposium on Foundations of Computer
Science, 151–158.

2. An, B., Z. Shen, C. Miao, and D. Cheng (2007). Algorithms for transitive
dependence-based coalition formation. IEEE Trans. Ind. Informat., 3(3), 234–245.

3. Ando, H., Y. Oasa, I. Suzuki, and M. Yamashita (1999). Distributed memo-
ryless point convergence algorithm for mobile robots with limited visibility. IEEE
Transactions on Robotics and Automation, 15(5), 818–828.

4. Bhatia, A. and E. Frazzoli, Decentralized algorithm for minimum-time ren-
dezvous of dubins vehicles. In 2008 American Control Conference. 2008.

5. Bhattacharya, B. (2011). On the Fermat-Weber point of a polygonal chain and
its generalizations. Fundamenta Informaticae, 107(4), 331–343.

6. Bhattacharya, S., V. Kumar, and M. Likhachev, Distributed optimization
with pairwise constraints and its application to multi-robot path planning. In
Proc. of the Robotics: Science and Systems Conference (RSS). 2010.

7. Borenstein, J. and L. Feng (1996). Measurement and correction of systematic
odometry errors in mobile robots. IEEE Transactions on Robotics and Automa-
tion, 12(6), 869–880.

8. Boyell, R. (1976). Defending a moving target against missile or torpedo attack.
IEEE Trans. Aerosp. Electron. Syst., AES-12(4), 522–526.

9. Brown, T. L., T. D. Aslam, and J. P. Schmiedeler, Determination of mini-
mum time rendezvous points for multiple robots via level set methods. In ASME
2011 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, volume 6. 2011.

10. Bullo, F., J. Cortes, and S. Martinez, Distributed Control of Robotic Net-
works: A Mathematical Approach to Motion Coordination Algorithms . Princeton
University Press, Princeton, NJ, USA, 2009. ISBN 0691141959, 9780691141954.

11. Cao, Y., W. Yu, W. Ren, and G. Chen (2013). An overview of recent progress
in the study of distributed multi-agent coordination. IEEE Trans. Ind. Informat.,
9(1), 427–438.

12. Chen, G., Z. Yang, and C. Low (2006). Coordinating agents in shop floor
environments from a dynamic systems perspective. IEEE Trans. Ind. Informat.,
2(4), 269–280.

13. Chen, J. and M. Barnes (2014). Human-agent teaming for multirobot control:
A review of human factors issues. IEEE Trans. Human-Mach. Syst., 44(1), 13–29.

109

14. Chung, T., G. Hollinger, and V. Isler (2011). Search and pursuit-evasion in
mobile robotics: A survey. Autonomous Robots , 31(4), 299–316.

15. Chunhe, H. and C. Zongji, Minimum time rendezvous for multi-vehicle with
non-identical velocity constraints. In Proceedings of 2014 IEEE Chinese Guidance,
Navigation and Control Conference. 2014.

16. Cockayne, E. and Z. Melzak (1969). Euclidean constructibility in graph-
minimization problems. Mathematics Magazine (published by Mathematical Asso-
ciation of America), 42(4), 206–208.

17. Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition. The MIT Press, 2009, 3rd edition. ISBN 0262033844,
9780262033848.

18. Courant, R. and H. Robbins, What is Mathematics ? . Oxford University Press,
1941.

19. Dijkstra, E. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik , 1, 269–271.

20. Drezner, Z. and H. W. Hamacher, Facility Location: Applications and Theory .
Springer, 2004.

21. Drezner, Z. and G. Wesolowsky (1980). Single facility lp-distance minimax
location. SIAM Journal on Algebraic and Discrete Methods , 1(3), 315–321.

22. Edelsbrunner, H., L. J. Guibas, and J. Stolfi (1986). Optimal point location
in a monotone subdivision. SIAM J. Comput., 15, 317–340.

23. Elzinga, J. and D. Hearn (1972). Geometric solutions for some minimax location
problems. Transportation Science, 6, 379–394.

24. Fax, J. A. and R. M. Murray (2004). Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control , 49(9), 1465–
1476.

25. Francis, R. L. (1967). Some aspects of a minimax location problem. Operations
Research, 15(6).

26. Fredman, M. and R. Tarjan, Fibonacci heaps and their uses in improved net-
work optimization algorithms. In Proc. of Twenty Fifth Annual IEEE Symposium
on Foundations of Computer Science. 1984.

27. Ganguli, A., J. Cortés, and F. Bullo (2009). Multirobot rendezvous with
visibility sensors in nonconvex environments. IEEE Transactions on Robotics , 25,
340–352.

28. Garcia, E., D. W. Casbeer, Z. E. Fuchs, and M. Pachter (2018). Cooperative
missile guidance for active defense of air vehicles. IEEE Transactions on Aerospace
and Electronic Systems , 54(2), 706–721. ISSN 0018-9251.

29. Ghosh, S. K. and D. M. Mount, An output sensitive algorithm for computing
visibility graphs. In 28th Annual Symposium on Foundations of Computer Science
(sfcs 1987). 1987.

110

30. Han, D., G. Chesi, and Y. Hung (2013). Robust consensus for a class of
uncertain multi-agent dynamical systems. IEEE Trans. Ind. Informat., 9(1), 306–
312.

31. Hartley, R., K. Aftab, and J. Trumpf, L1 rotation averaging using the
Weiszfeld algorithm. In Proc. of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2011.

32. Hartline, J. and A. Sharp, An incremental model for combinatorial maximiza-
tion problems. In Proc. of Fifth International Workshop on Experimental Algo-
rithms, Springer-Verlag . 2006.

33. Hershberger, J. and S. Suri (1999). An optimal algorithm for Euclidean short-
est paths in the plane. SIAM Journal on Computing , 28, 2215–22566.

34. Isaacs, R. (1964). The best deployment of a naval force in the vicinity of po-
tential trouble spots. Internal Memorandum (CNA), Center for Naval Analysis,
Arlington, VA, 31–64.

35. Isaacs, R., Differential Games . Dover Publications, Inc., 1965. ISBN 0486406822.

36. Jadbabaie, A., J. Lin, and A. Morse (2003). Coordinations of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control , 48(6), 988–1001.

37. Jan, G. E., C. Sun, W. Tsai, and T. Lin (2014). An O(n log2 n) shortest
path algorithm based on Delaunay triangulation. IEEE/ASME Transactions on
Mechatronics , 19(2), 660–666.

38. Kapoor, S. and S. N. Maheshwari, Efficient algorithms for euclidean
shortest path and visibility problems with polygonal obstacles. In Pro-
ceedings of the Fourth Annual Symposium on Computational Geometry , SCG
’88. ACM, New York, NY, USA, 1988. ISBN 0-89791-270-5. URL
http://doi.acm.org/10.1145/73393.73411.

39. Kirkpatrick, D. G. (1983). Optimal search in planar subdivisions. SIAM J.
Comput., 12, 28–35.

40. Krarup, J. and S.Vajda (1997). On Torricelli’s geometrical solution to a problem
of Fermat. IMA Journal of Management Mathematics), 8(3), 215–224.

41. Kunwar, F., F. Wong, R. B. Mrad, and B. Benhabib, Time-optimal ren-
dezvous with moving objects in dynamic cluttered environments using a guid-
ance based technique. In 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems . 2005.

42. Latombe, J.-C., Robot Motion Planning . Kluwer Academic Publishers, Norwell,
MA, USA, 1991. ISBN 079239206X.

43. Leitão, P., V. Mařik, and P. Vrba (2013). Past, present, and future of industrial
agent applications. IEEE Transactions on Industrial Informatics , 9(4), 2360–2372.

44. Long, M. and C. Wu (2006). Energy-efficient and intrusion resilient authentica-
tion for ubiquitous access to factory floor information. IEEE Trans. Ind. Informat.,
2(1), 40–47.

111

45. Lozano-Perez, T. and M. A. Wesley (1979). An algorithm for planning
collison-free paths among polyhedral obstacles. Communications of the ACM ,
22, 560–570.

46. Lumelsky, V. J. and A. A. Stepanov (1987). Path-Planning Strategies for a
Point Mobile Automaton Moving Amidst Unknown Obstacles of Arbitrary Shape.
Algorithmica, 2, 403–430.

47. Luo, R. and C. Chang (2012). Multisensor fusion and integration: A review
on approaches and its applications in mechatronics. IEEE Trans. Ind. Informat.,
8(1), 49–60.

48. Megiddo, N. (1983). The weighted Euclidean 1-center problem. Mathematics of
Operations Research, 8(4), 498–504.

49. Melzak, Z., Companion to Concrete Mathematics . John Wiley & Sons, New
York, 1974.

50. Mitchell, J. S. (1996). Shortest paths among obstacles in the plane. International
Journal of Computational Geometry & Applications , 06(03), 309–332.

51. Murrieta-Cid, R., T. Muppirala, A. Sarmiento, S. Bhattacharya, and
S. Hutchinson (2007). Surveillance strategies for a pursuer with finite sensor
range. Int. J. Rob. Res., 26(3), 233–253.

52. Noori, N. and V. Isler (2014). Lion and man with visibility in monotone poly-
gons. Int. J. Rob. Res., 33(1), 155–181.

53. Notarstefano, G. and F. Bullo, Distributed consensus on enclosing shapes
and minimum time rendezvous. In Proceedings of the 45th IEEE Conference on
Decision and Control . 2006.

54. Olfati-Saber, R., J. Fax, and R. Murray (2007). Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE , 95(1), 215–233.

55. Olfati-Saber, R. and R. Murray (2004). Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions on Automatic
Control , 49(9), 1520–1533.

56. O’Rourke, J., Computational Geometry in C . Cambridge University Press, 1993.

57. Overmars, M. H. and E. Welzl, New methods for computing visibility graphs.
In Proceedings of the Fourth Annual Symposium on Computational Geome-
try , SCG ’88. ACM, New York, NY, USA, 1988. ISBN 0-89791-270-5. URL
http://doi.acm.org/10.1145/73393.73410.

58. Oyler, D., P. Kabamba, and A. Girard (2016). Pursuit evasion games in the
presence of obstacles. Automatica, 65, 1–11. ISSN 0005-1098.

59. Rademacher, H. and O. Toeplitz, The Enjoyment of Mathematics . Princeton
University Press, 1957.

60. Ren, W. and R. Beard (2005). Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transactions on Automatic
Control , 50, 655–661.

112

61. Rimon, E. and D. E. Koditschek (1992). Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501–
518.

62. Rohnert, H. (1986). Shortest paths in the plane with convex polygonal obstacles.
Information Processing Letters , 23, 71–76.

63. Rosin, P. L. (1997). Techniques for assessing polygonal approximations of curves.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6), 659–666.
ISSN 0162-8828.

64. Schwartz, J. T. and M. Sharir (1983). On the piano movers’ problem i. the
case of a two-dimensional rigid polygonal body moving amidst polygonal barriers.
Communications on Pure and Applied Mathematics , 36(3), 345–398.

65. Scott, W. and N. Leonard, Pursuit, herding and evasion: A three-agent model
of caribou predation. In 2013 American Control Conference. 2013.

66. Setter, T. and M. Egerstedt, Minimum time power-aware rendezvous for multi-
agent networks. In 2014 IEEE Conference on Control Applications (CCA). 2014.

67. Vicsek, T., A. Czirok, E. Jacob, I. Choen, and O. Schochet (1995). Novel
type of phase transitions in a system of self-driven particles. Phys. Rev. Lett., 75,
1226–1229.

68. Vundurthy, B., A. More, S. V. V. Raju, and K. Sridharan, Rendezvous
of heterogeneous robots amidst obstacles with limited communication. In 2016
Indian Control Conference (ICC). 2016.

69. Vundurthy, B. and K. Sridharan, Time optimal rendezvous for multi-agent
systems amidst obstacles - theory and experiments. In IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society . 2018.

70. Vundurthy, B. and K. Sridharan (2019). Multiagent gathering with collision
avoidance and a minimax distance criterionefficient algorithms and hardware re-
alization. IEEE Transactions on Industrial Informatics , 15(2), 699–709. ISSN
1551-3203.

71. Weiss, L. (2011). Autonomous robots in the fog of war. IEEE Spectrum, 48(8),
30–57.

72. Weiszfeld, E. (1936). Sur le point pour lequel la somme des distances de n points
donnes est minimum. The Tohoku Mathematical Journal , (43), 355–386.

73. Wynters, E. and J. Mitchell, Shortest paths for a two robot rendezvous. In
Proc. of Fifth Canadian Conference on Computational Geometry . 1993.

74. Yamaguchi, H. (1999). A cooperative hunting behavior by mobile-robot troops.
The International Journal of Robotics Research, 18(9), 931–940.

75. Yao, A. C., Some complexity questions related to distributed computing. In
Proc. of 11th ACM Symposium on Theory of Computing (STOC). 1979.

76. Yu, J., S. LaValle, and D. Liberzon (2012). Rendezvous without coordinates.
IEEE Transactions on Automatic Control , 57, 421–434.

113

77. Yu, W., L. Zhou, X. Yu, J. Lu, and R. Lu (2013). Consensus in multi-
agent systems with second-order dynamics and sampled data. IEEE Trans. Ind.
Informat., 9, 2137–2146.

78. Yuan, Y., H. Yuan, L. Guo, H. Yang, and S. Sun (2016). Resilient control
of networked control system under DoS attacks: a unified game approach. IEEE
Trans. Ind. Informat., 12(5), 1786–1794.

79. Zhan, J. and X. Li (2013). Flocking of multi-agent systems via MPC based on
position-only measurements. IEEE Trans. Ind. Informat., 9, 377–385.

80. Zhou, X., Y. Li, B. He, and T. Bai (2014). GM-PHD-based multi-target visual
tracking using entropy distribution and game theory. IEEE Trans. Ind. Informat.,
10(2), 1064–1076.

81. Zou, R. and S. Bhattacharya (2016). Visibility-based finite-horizon target
tracking game. IEEE Robot. Autom. Lett., 1(1), 399–406.

114

