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Abstract—Rendezvous of multiple autonomous agents has been
of active interest in the last decade. Considerable work has
been done on this problem with constraints on sensing and
shape of the environment. However, not much is known on
rendezvous amidst obstacles. When obstacles are introduced into
the setting, it becomes natural to explore strategies for rendezvous
that optimize some parameter (such as distance, time etc.). Qur
objective in this paper is to compute a location (which we refer to
as the Time Optimal Rendezvous Point (TORP)) that minimizes
the time for rendezvous amidst obstacles. We discuss challenges in
finding TORP and develop efficient algorithms to compute TORP
for r agents moving amidst m static polygonal obstacles. We then
extend the analysis to handle dynamic obstacles. Experimental
results are presented to validate the theory.

Index Terms—Multi-agent systems, Time Optimal Rendezvous,
Obstacles, Computational Geometry, Efficient Algorithms, Ex-
periments

I. INTRODUCTION

Distributed control of multi-agent systems [1] has been
pursued actively during the last decade for accomplishing
various tasks efficiently. Given the wide range of applications,
it has attracted the attention of diverse research groups. In
particular, multi-agent systems have become invaluable in
handling security of cyber-physical energy systems [2], cou-
pling heterogeneous cyber-physical production systems [3] and
software methodologies [4].

A problem of interest with respect to multi-agent systems
operating in a factory floor, hospital or other environments
is consensus. Research on consensus includes strategies for
rendezvous taking into account constraints on sensors and
communication [5], [6]. Qin et al. [7] describe various contri-
butions to consensus and coordination of multi-agent systems
during the last decade.

In this paper, we consider a version of the classical ren-
dezvous that has not received considerable attention in the
literature. In particular, we address the rendezvous problem
with obstacles introduced into the environment and compute a
point that can be reached by the agents in minimum time from
their (given) initial locations. We refer to this point as the Time
Optimal Rendezvous Point (TORP) and denote it by R;. We
assume that each agent is a point mass (similar to assumptions
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in prior works) and further the starting locations of the agents
are known to all the agents. Enforcing a constraint on the time
can be related to the energy consumed by the system [8].

Having knowledge of the initial locations of the agents (as
well as static obstacles) is practical in the following situations:
(i) Groups of friendly agents that are employed in defense
applications may be provided knowledge of the location of
the others (in the group) and may want to meet to replenish
or exchange their supplies (ii) Groups of agents engaged in
emergency informatics may operate with knowledge of the
individual locations so as to facilitate transfer of medical kits
or other gadgets between them. Obstacles could be water
bodies (or other entities) in the case of agents operating in
outdoor environments while they could be chairs or desks (for
example) in an indoor setting.

Optimization with respect to some criteria for the ren-
dezvous problem has been considered in prior work. The
authors in [9] present a solution to achieve rendezvous in
minimum time for a network of first order agents with bounded
inputs. A decentralized algorithm to calculate arrival angles at
a precomputed TORP for Dubin’s vehicles is reported in [10].
Recently, new techniques to compute TORP for multi-agent
systems with velocity [11] and power [8] constraints have been
reported. However, obstacles have not been considered in any
of these formulations. The authors in [12] consider line of
sight communication for a pair of agents and compute the
point that minimizes the maximum distance amidst obstacles.
An extension to r agents is reported in [13] for the same
distance metric. However, time optimal rendezvous is not
considered in [12] and [13]. Further, existing algorithms do
not accommodate the presence of dynamic obstacles while
applying the minimum time constraint.

We approach this problem by identifying that TORP is
identical to the point in plane that minimizes the maximum
time taken by any agent to arrive at the point. This leads to
an algorithm to compute TORP for r agents. We then explore
the location of TORP when it is computed on intermediate
locations of agents, where each agent has traversed a finite
time prior to arriving at these locations. We use these two
results to compute the TORP for r agents moving amidst m
polygonal static obstacles, followed by extending the results
to handle dynamic obstacles.
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The rest of the paper is organized as follows. In section II,
we compute the TORP for initial and intermediate locations
of r agents in the absence of obstacles. Section III enhances
the algorithm to handle m polygonal obstacles while section
IV further enhances it to handle dynamic obstacles. Exper-
imental results using multiple autonomous robotic agents in
a constrained environment have been reported in Section V.
Comparisons with prior works have been offered in section VI
while section VII concludes the paper.

II. ALGORITHM FOR COMPUTING TORP IN THE ABSENCE
OF OBSTACLES

In this section, we present an algorithm to compute TORP
for r agents in the absence of obstacles. We begin by formu-
lating this problem as a minimax problem in travel times of
agents. Such a formulation facilitates the computation of the
TORP as the center of the smallest enclosing circle for all
agent locations.

A. Computing TORP for r agents

(a) Rendezvous at R

(b) Rendezvous at TORP, R;

Fig. 1. Illustration of rendezvous points and travel times for four agents

The total time (7T") for rendezvous at a location (say R)
is equivalent to the time taken by all agents to arrive at the
location. Without loss of generality, let the agents arrive at
R in the order Py, Py, - -, P,, indicating that P; arrives at
R prior to every other agent while every other agent arrives
at R before P.. Thus the time taken for rendezvous is equal
to the travel time of agent P, which is the maximum time
taken by any agent to arrive at R. Further, TORP (R;) can
then be computed by comparing the times for rendezvous at
every possible location in the plane and identifying the point
where the minimum occurs.

Fig. 1 illustrates the rendezvous of four agents at two
distinct locations R and R;. In Fig. 1(a), the agents arrive at
R in the order Py, P», Ps, Py and thus the time for rendezvous
T is the time taken by Py to arrive at R. Fig. 1(b) hints at the
computation of TORP. It can be observed that the rendezvous
point R; is equidistant to P;, P3 and Py. Thus the time for
rendezvous (denoted by T3) is equal to the travel time of either
of these agents. Further, the time for rendezvous at R; (in Fig.
1(b)) is definitively lesser than the time for rendezvous at R
(in Fig. 1(a)).

Consider the location of agent P, in Fig. 1(b). Since the
time taken by P, to arrive at R; is less than the time taken
by remaining agents, agent P, does not have any affect on

the location of R;. In fact, as long as P» remains within the
circle C4, it would arrive at R; prior to the remaining agents
and thus cannot affect the location of TORP. It can further be
observed that any addition of new agents within the circle C;
would not affect the location of TORP either. The following
Theorem 1 utilizes these observations to compute the TORP.
Theorem 1: The TORP (R;) for r identical agents is located
at the center of the smallest enclosing circle that contains the
initial locations of these r agents.
Proof: Without loss of generality, let m agents (where m €
ZF,m < r) lie on the smallest enclosing circle (denoted by
C; and centered at R;) and the remaining » — m agents lie
within the circle Cy. The r — m agents contained in the circle
do not contribute to the TORP since their travel times to R;
are less than those of the m agents that lie on the circle C;.
For the m agents that lie on the circle, consider a point P
that is a finite distance away from R;. The rendezvous time
(T') taken by the m agents to arrive at P would be greater than
the rendezvous time to arrive at the center of the circle R;.
Thus every other point in the circle can be discarded in lieu
of the center of the circle as a candidate TORP. Consequently,
the center of the circle R; is indeed the TORP. Q.E.D.

Fig. 2. TORP for 9 agents is the center of the smallest enclosing circle Cy

Fig. 2 illustrates Theorem 1 for 9 agents. Agents P;, Ps,
P5, P; lie on the smallest enclosing circle (m = 4) while the
remaining agents lie within the circle C;. Due to their lower
travel times to Ry, the remaining 5 agents (shown in black)
do not affect its location. For an arbitrary rendezvous point P,
agent Ps takes the longest time (7) to arrive at P which is the
rendezvous time for all agents. Since this time 7" is greater than
the rendezvous time (73) to the center of the circle, the point P
is ignored as a candidate TORP. With a similar analysis, every
point in the plane has a longer rendezvous time compared to
the center of the circle which proves that the TORP is indeed
the center of the circle (Theorem 1).

In the following section, we extend this analysis to a
scenario where the agents have elapsed a finite time before
arriving at the locations that are used in computing the TORP.

B. Computing TORP using intermediate locations of r agents

In this section, the computation of R; is performed on the
locations of r agents given by { Py, Py, -+, P, }, while taking
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into account the respective times (denoted by {t1,t2,- - ,t,})
the agents spend in arriving at these locations. We refer to the
time elapsed as the weight of an agent at a given location. The
solution presented in the previous section II-A turns out to be
a special case of this problem with zero weights at all agent
locations.

.---._1,—’1 .---..tl
\Pl t. PlTl t.
R.AT/‘E’.Q,3 Rt"T/S‘%j
/ :
P2 t2. P2 t2.

(a) Rendezvous at R (b) Rendezvous at TORP, R;

Fig. 3. Tllustration of rendezvous points for three agents with non zero weights

Fig. 3 illustrates the rendezvous of three agents located at
Py, P, P; with their associated weights %1, to, t3 respectively.
It is worth noting that the information on locations of these
agents prior to their arrival at P;, P>, P53 is unknown and the
figure illustrates only one among infinite possibilities of such
locations. An arbitrary rendezvous location R is picked in Fig.
3(a). It can be observed that agents P; and P, arrive at R prior
to the arrival of Ps. Thus the rendezvous time in this scenario
is equivalent to the travel time of agent P5; which is T+ 3.

In order to obtain the TORP, it is desirable to minimize
the maximum time of arrival at a given rendezvous point.
This is achieved by observing the weights at each agent
location and ensuring that the rendezvous point be closer to
the agent that has the highest weight. It is further desirable to
verify the existence of a location where the agents can arrive
simultaneously, as illustrated in Fig. 3(b). Such a location (if
it exists) would have the following property given by (1). In
the absence of weights, such a location would be the center
of the smallest enclosing circle (Theorem 1). We utilize this
to present Theorem 2.

L+Ti=to+To=t3+ 13 (D

Theorem 2: Consider r circles with their centers located
at agent locations Py, Ps,--- , P, and their radii equal to the
weights at each location t1,ts,--- ,t,.

The TORP (Ry;) for these r agents with their respective

weights is the center of the smallest enclosing circle that
contains each of these r circles.
Proof: Given the weight and agent location, the locus of
points that can be reached from the agent location in fixed
time constitutes a circle with center at the agent location and
radius equal to its weight. This circle indicates all possible
initial locations for an agent to arrive at P; in time ¢;
Vie{1,2,---,r}.

Given the initial locations of agents, TORP can be computed
as the center of the smallest enclosing circle containing all the

initial locations, as given by Theorem 1. Consequently, TORP
for this problem can be computed as the center of the smallest
enclosing circle that contains all the circles constructed at
agent locations. Q.E.D.

We now present Lemma 1 which restricts the number of
agent locations that constitute the smallest enclosing circle.
However, the following mathematical facts are necessary in
constructing the proof for lemma. For any two circles centered
at Cy and Cy with radii 1 and ro, circle at C is contained in
circle at C if (2) is satisfied. Additionally, the locus of points
P where two agents located at P, and P, (with weights ¢;
and t,) arrive simultaneously turns out to be a hyperbola as
given by (3), where c is a constant.

C1Cy <rg—11 (2)
PP1+C><t1:PP2+CXt2 (3)

Lemma 1: The smallest enclosing circle Cy for r circles

with non-zero radii requires a maximum of three circles for
its construction. The remaining circles either lie in the interior
of Cy or are tangential to its boundary.
Proof: It follows from (1) that the center of the smallest
enclosing circle is located such that the associated agents arrive
at it simultaneously. Such a center is the point of intersection
of hyperbolas constructed with the locations of associated
pairs of agents as given by (3). However, only a maximum
of three hyperbolas can intersect at a single point in the plane
(excluding degeneracy) which proves the first statement of the
lemma.

Among all the points of intersections of hyperbolas, the
point (say R;) which maximizes the rendezvous time (7}) is
the TORP. Further, this rendezvous time is the radius of the
smallest enclosing circle, centered at R;. It thus follows from
Theorem 2 that every other circle is contained (internal or
tangential) in the circle C}. Q.E.D.

We utilize Theorem 2 and Lemma 1 to present an algorithm
that accepts the agent locations and weights as input and
computes the TORP. We adopt an incremental approach by
beginning with the largest circle, identifying the circles that
lie external to it and gradually increasing its radius to enclose
all the remaining circles.

Algorithm Min_Time_Weights

INPUT: Locations of all r agents P, Ps,---, P, and their
corresponding weights t1,%s,- -+ ,t,.

OUTPUT: Time Optimal Rendezvous Point (TORP), R; and
the time for rendezvous, T;.

Step 1: Construct r circles with centers at agent locations and
radii equal to their weights. Initialize an empty set .S.

Step 2: Evaluate R, and T} as the location and weight of the
agent with the highest weight and add its location to set S.
Step 3: For a circle C; centered at R; with a radius of 73,
use (2) to identify the agent whose circle is not contained in
Ct. Add the agent location to S.

If all agents’ circles are contained in C}, output the current
values of R; and T;. Stop.

Step 4: Evaluate R; and T} using Step 5 on the set .S and
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return to Step 3.

Step 5: If S has only two agent locations, evaluate R; as
the point of intersection of line segment joining them and the
hyperbola constructed using (3).

If S has three agent locations, overwrite R; with the point of
intersection of three hyperbolas constructed using (3) and 7;
with its corresponding weight.

If S has four agent locations, identify the triplet whose
point of intersection of hyperbolas has the highest weight.
Overwrite R; with this point, 7; with its weight and remove
the remaining agent location from S. ]

Fig. 4. TORP (R:) for 7 agents with non-zero weights at their locations

Fig. 4 illustrates Algorithm Min_Time_Weights for 7 agent
locations with their corresponding weights. The algorithm
begins by constructing r circles as shown and picks agent
P, that has the maximum weight. Step 3 of the algorithm
identifies that the circle at P5 lies outside the previous circle
at P,. Set S currently includes P, and P3 which is used in
computing and updating TORP in Step 5. Further iterations
slowly increases the radius 7} of the smallest enclosing circle
eventually computing C; as shown. The final elements of the
set S are P, P, and Pg (shown in blue) which are used in
constructing R; in Step 5.

III. ALGORITHM TO COMPUTE TORP FOR MULTI-AGENT
SYSTEMS MOVING AMIDST OBSTACLES

In this section, we compute the point that minimizes the
total time for rendezvous for r agents as they negotiate m
polygonal obstacles. In order to minimize the time for travel
between two locations amidst obstacles, an agent computes
and follows the shortest path from one location to another. This
shortest path amidst m polygonal obstacles can be efficiently
computed using the algorithm presented in [14]. We use this
along with the results presented so far to develop the following
Theorem 3 that computes the TORP.

Consider r agents denoted by Pi,Ps,---, P, moving
amidst m polygonal obstacles. Let R be the rendezvous point
computed using Algorithm Min_Time_Weights with initial
locations and zero weights. Let Q1,Q2, - ,Q, represent
the agent locations before arriving at R when the agents

take the shortest path from their initial locations (to R). Let
t1,t2,- - ,t. be the corresponding time taken by each agent.

Theorem 3: TORP (R.) for these r agents amidst m

obstacles is the rendezvous point computed on the lo-
cations Q1,Q2, -+ ,Q, with their corresponding weights
t1,ta, -+ ,t., using Algorithm Min_Time_Weights.
Proof: The minimum time for rendezvous for r agents in the
absence of obstacles occurs at R, as given by Theorem 1. Any
deviation from the path to R increases the time for rendezvous.
Since the deviation is minimum along the shortest path in the
presence of obstacles, the locations given by Q1,Q2, - , Q-
are common to the paths taken by agents to arrive at both R
and the TORP, R;.

Further, the paths from agent locations @1, @2, - , Q. to
either R or R; are not obstructed by any obstacle. It follows
from Theorem 2 that the center of the smallest enclosing
circle with corresponding weights would have a lower time
for rendezvous than any other point in the plane, including R;
which concludes that the center is indeed TORP (R;). Q.E.D.

2

(a) Obstacles on the paths to R (b) TORP obtained using Theorem 3

Fig. 5. Computation of TORP for three agents amidst three obstacles

Fig. 5 illustrates rendezvous of three agents amidst
three polygonal obstacles. The agents begin their attempt
at rendezvous by computing the TORP using Algorithm
Min_Time_Weights with zero weights at initial locations. The
obstructions on the path to this rendezvous point R are shown
in Fig. 5(a). In order to negotiate these obstacles, the agents
have to deviate from their straight line path to R. Such a
deviation necessitates a recomputation of TORP as indicated
in Fig. 5(b).

The agents arrive at locations )1, 2 and Q3 and recompute
TORP using Algorithm Min_Time_Weights with weights
equal to the time elapsed by the agents to arrive at these
locations. The weights are represented by the radii of dashed
circles. The new rendezvous point (/;) that minimizes the time
for rendezvous and the corresponding smallest enclosing circle
are illustrated in Fig. 5(b). This is condensed into the following
algorithm which is based on Theorem 3. An illustration for
higher number of agents is presented via an experiment in
section V.

Algorithm Min_Time_Obstacles

INPUT: Locations of all r agents and m polygonal obstacles.
Weights at initial locations.

OUTPUT: Time Optimal Rendezvous Point (TORP), R; and
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the paths of all agents to R;.

Step 1: Compute the rendezvous point R for r agents using
their locations and corresponding weights with the help of
Algorithm Min_Time_Weights.

Step 2: Compute the shortest paths for all agents from their
initial locations to R using [14]. Identify @); as the last vertex
of obstacle visited by P; before arriving at R along the
shortest path, where ¢ € {1,2,--- ,r}.

If the shortest path for an agent P; is not obstructed, identify
Q; as the agent location P;.

Step 3: Compute TORP R; wusing Algorithm
Min_Time_Weights  with  locations {Q1,Q2, - ,Q}
and weights equal to the time taken by each agent to travel
from P; to ;. Output R; and the corresponding shortest
paths leading to R;. ]

IV. EXTENSION TO HANDLE DYNAMIC OBSTACLES

In an industrial setting, the agents would have to negotiate
dynamic obstacles like Automated Guided Vehicles (AGVs) or
humans, en route to TORP. It is thus of interest to design an
algorithm to ensure rendezvous, even when one or more agents
are obstructed by dynamic obstacles. We begin by showing
that subsequent re-computations do not affect the location of
TORP when the agents negotiate just the static obstacles.

Theorem 4: Recomputation of TORP (R;) using Algorithm
Min_Time_Obstacles at intermediate locations of agents after
they have traveled for a finite time, does not affect its location.
Proof: Time optimal rendezvous point is computed by finding
the point of intersection of hyperbolas (given by (3)) at
agent locations while taking their weights into consideration.
This corresponds to Step 5 of Algorithm Min_Time_Weights.
Let the recomputation be performed at intermediate locations
when every agent has traversed a finite time ¢{y. A constant
factor of ¢y thus appears in weights of agent locations as given
by (4).

PP1+CX(t1—tf)=PP2+CX(tQ—tf) 4)

Since (4) evaluates to (3), there is no change in the point
of intersection of hyperbolas and thus the TORP remains
unaffected. Q.E.D.
It is assumed that the agent, when obstructed by a dynamic
obstacle, waits until its path is cleared. The time spent by an
agent in waiting is not uniform across all agents. Thus the
arguments in the proof to Theorem 4 no longer hold when
even one of the agents faces a dynamic obstacle. It is thus
necessary to recompute the TORP by taking into account the
travel times of various agents and the time elapsed in waiting.
This is accomplished with the help of the following algorithm.
Algorithm Dynamic_Obstacle_Handling
INPUT: Initial locations of all agents and static obstacles.
Time Optimal Rendezvous Point (TORP), R; and the paths of
all agents to R,. Distance sensor information.
OUTPUT: Rendezvous of all agents.
Step 1: Allow each agent to proceed on its path to R; until
faced by a dynamic obstacle or the agent arrives at R;. If all
agents arrive at the same location, Stop.

Step 2: If a dynamic obstacle is detected, halt the agent and
communicate the current location of the agent along with
the time elapsed in traveling and waiting, at fixed intervals.
Request and receive this information from all other agents.
Step 3: Recompute and update the TORP (R;) with the current
locations of all agents and their corresponding weights (time
elapsed), using Algorithm Min_Time_Obstacles.

Step 4: Compute and update the shortest paths for all agents
from their current locations to R; (computed in Step 3).
Proceed to Step 1. ]

V. EXPERIMENTAL VALIDATION OF ALGORITHMS

The hardware realization of algorithms presented thus far
is achieved with the help of small differential drive mobile
robots. Each robot is equipped with an Arduino UNO board
featuring an ATmega328P microcontroller to control the mo-
tion of robot and to compute the TORP with the location
information on agents and obstacles. The communication
between agents for exchanging information on location and
elapsed time is achieved with the help of Xbee-PRO RF
modules that operate at 2.4 GHz.

Detection of dynamic obstacles is achieved with the help
of ultrasonic range detection sensors mounted on micro-servo
motors. The localization of robots is attributed to MOC7811
speed sensor mounted on each wheel of the robot. MOC7811
is an inexpensive opto-coupler that provides adequate accuracy
while eliminating any necessity for a motion capture system.
A 12V, 1.3AH sealed maintenance-free lead acid battery is
used to power each robot.

Various experiments have been performed to validate the
proposed algorithms, two of which are presented here. Fig. 6
illustrates the first experiment where five agents are considered
for rendezvous amidst two rectangular obstacles. Agents em-
ploy Algorithm Min_Time_Obstacles to compute the TORP,
R;. Algorithm Dynamic_Obstacle_Handling is then used
by the agents to travel along their shortest paths to their
destination R,. Intermediate locations of agents are shown in
Fig. 6(a) while their rendezvous is illustrated in Fig. 6(b).
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(a) Agents proceed towards R

4.

(b) Rendezvous of agents at Ry

Fig. 6. Time-optimal rendezvous of five agents amidst two obstacles

In the second experiment (Fig. 7), we allow an AGV to
obstruct the path of agent P, as three agents attempt to
rendezvous at RY in the presence of one polygonal obstacle.
The ultrasonic sensor on agent P, detects the AGV as a
dynamic obstacle and invokes Step 2 of Algorithm Dy-
namic_Obstacle_Handling. Once the current location infor-
mation and the waiting times of all agents are communicated
to each other, TORP is recomputed. While the agents P; and
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COMPARISON OF VARIOUS FEATURES OF PROPOSED ALGORITHMS WITH

TABLE I

PRIOR WORKS INVOLVING TIME-OPTIMAL RENDEZVOUS

TABLE II
COMPARISON OF VARIOUS ASPECTS OF EXPERIMENTAL SETUP

Criteria | [16] Proposed
: ¥
Criteria Sﬁ;ﬁz;?cd Identical Hardware iﬂg‘:zﬁf Cl:rl:ll::lbz:c(;'?nglem'sth 2 rwherer €Z7,r > 2
. unication wi
- Obstacles Agents Realization Information Central Computer Yes No
[8], [11], [15] No No No Yes Localization CCD Camera On-board Encoders
[9], [10] No Yes No Yes Processing Central Host On-board
[16] Yes One Yes No Support Computer Microcontroller
Proposed Yes Yes Yes Yes
REFERENCES

P; keep moving to the current TORP, agent P» requests for
recomputation until the AGV clears its path. It can be observed
that the final rendezvous occurs at R} .
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(b) Rendezvous at Rt1

(a) P» detects dynamic obstacle

Fig. 7. Time-optimal rendezvous for three agents amidst one static and one
dynamic obstacle (AGV)

Experimental results reflect the ability of proposed algo-
rithms to quickly compute the TORP on just a microcontroller
without any support from a central hub. The computation
of shortest path from agents’ locations to TORP is also
parallelizable by allowing each agent to perform its own
computation. Additionally, when handling a dynamic obstacle,
the computation is performed in fixed intervals to further
minimize the waiting times of agents.

VI. COMPARISONS

The algorithms presented in this paper have been compared
with prior work in Table I. Prior work considering obstacles is,
in general, limited. While there have been attempts to achieve
time optimal rendezvous in dynamic cluttered environments
[16], the study (and experiments) are limited to a single
autonomous vehicle attempting a rendezvous with moving
targets. In order to enhance our algorithm to handle dynamic
obstacles, we allow the agents to communicate when faced by
a dynamic obstacle and recompute the TORP by taking into
account their waiting time, as discussed in section IV. Table
II presents a comparison of the key features of experiments in
our work and in [16].

VII. CONCLUSIONS

We have considered the rendezvous problem for multi-agent
systems amidst obstacles in this paper. Various algorithms
are presented for finding the Time Optimal Rendezvous Point
(TORP) in the absence and presence of static obstacles. An
algorithm to handle dynamic obstacles while retaining the
constraint on minimum time is also presented. Finally, effi-
cient hardware realization of the algorithms on indigenously
fabricated small mobile robots is described.
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