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Abstract—Multiple autonomous agents working cooperatively
have contributed to the development of robust large-scale sys-
tems. While substantial work has been done in manufacturing
and domestic environments, a key consideration for small hard-
ware agents engaged in collaborative factory automation and
welfare support systems is limited area and power on-board.
When the agents attempt to meet for performing a task, it is
natural for them to encounter obstacles and it is desirable for
each agent to optimize its resources during its navigation. In this
paper, we develop efficient geometric algorithms to find a point,
termed as the gathering point (and denoted by PG), for the agents
that minimizes the maximum of path lengths. In particular, we
present an O(n log2 n) time algorithm for calculation of PG for
an environment with two agents and n static polygonal obstacles.
We then use the notion of a weighted minimax point to derive
an efficient algorithm (with complexity of O(k2 + kn log2 n)) for
computing PG for an environment with k agents and n obstacles.
An enhancement to a dynamic environment is then presented.
We also present details of an efficient hardware realization of
the algorithms. Each agent, equipped with only an ATmega328P
microcontroller and no external memory, executes the algorithms.
Experiments with multiple agents navigating amidst static as well
as dynamic obstacles are reported.

Keywords: Cyber-physical systems, Agent Gathering, Mini-
max Criterion, Obstacles, Computational Geometry, Efficient
Algorithms, Hardware Realization

I. INTRODUCTION

Multi-agent systems constitute an important component
of cyber-physical systems and play a key role in industrial
automation [1]. They assist humans to perform a variety of
tasks including pick and place, and exchange of parts for
facilitating manufacturing. The agents operate in the presence
of different types of machines for cutting, grinding and other
purposes [2].

Welfare support systems [3], [4] represent an important do-
main for multi-agent collaboration. Typical workplaces include
individual homes and public nursing institutions. Multiple
agents may be engaged to meet and exchange food items,
cutlery etc. This is particularly receiving increased emphasis
in view of the need for appropriate implementation of aging-
in-place [5]. Here too, the agents negotiate various objects
such as chairs and tables as they endeavour to meet.

Industrial as well as domestic environments also involve
moving objects (besides static ones) such as humans and
utility carts that the agents need to handle suitably. Multi-
agent technologies comprise of software-based agents (such
as those based on the Java Agent Development Framework)
[2], hardware agents [6] or a combination of both. Hardware
agents may consist of robot arms [1], mobile robots [3], [6] or
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other autonomous systems. The work described in this paper
is on hardware agents and in particular, autonomous mobile
robots. Mobile robots operate with power constraints and it is
desirable for each robotic agent to operate for several hours
without recharging (of the batteries on-board). This goal can
be related to the ‘travel’ distance for each robot before they
meet (to exhange supplies). The objectives of this work are
therefore as follows.

1) Define a measure of distance that takes into account the
constraints on resources (power, area) for each of the
agents in a multi-agent scenario.

2) Develop an efficient algorithm for gathering of two
agents (meeting the distance criterion) amidst n static
obstacles.

3) Extend the approach to gathering of k agents amidst
obstacles.

4) Enhance the strategy to handle dynamic obstacles.
5) Provide experimental results on gathering of agents with

limited hardware on each.

Since our objective is to reduce the frequency of recharging
of each agent, an intuitive approach to define a distance
measure is based on ensuring that the difference between
the distances travelled by any two agents (before meeting) is
small. In other words, it is beneficial to minimize the maximum
Euclidean distance travelled by the agents before they meet.
We refer to the location that achieves this as the minimax
point (and denote by PM ). PM corresponds to an environment
without static obstacles. The minimax point is also motivated
by prior work on optimal location of emergency services such
as hospitals [7].

For an environment with obstacles that autonomous agents
need to negotiate, we refer to the location that minimizes
the maximum Euclidean distance as the gathering point (and
denote by PG). The development of an efficient algorithm for
computing PG requires an appropriate model of the obstacles
for collision avoidance. We assume that the area used by
machines, furniture etc. can be represented by polygons of
arbitrary shape (they could be non-convex). We assume further
that our agents are small and each can be represented by a
point mass (similar to assumptions in prior work [8]).

The contributions of this paper are as follows. We develop
a number of theoretical results that facilitate computation of
PG. We then present efficient algorithms (with low asymptotic
complexity) for calculation of PG when the environment
consists of (i) two agents and n obstacles and (ii) k agents and
n obstacles. Efficient algorithms facilitate quick computation
of PG given information on obstacle locations. They also allow
update of PG whenever the position of the agents change or
when the obstacle locations change slightly. We then consider



2

moving objects in the same environment and develop a path
following algorithm that each agent can incorporate to move
to PG safely even when dynamic objects are present.

Another contribution of the work presented is efficient
hardware realization of the proposed algorithms. We depict
an implementation of the gathering point computation on
small robots, each equipped with only a microcontroller. The
memory on the microcontroller is shown to be adequate
for implementation of the proposed algorithms. No external
storage is required. Further, position information and distance
(to obstacle) information are obtained using simple and low-
cost units. The approach does not require a central controller
for effecting the gathering of multiple agents.

Prior work on hardware multi-agent systems has examined
coordination and other tasks [9] but there does not appear to be
efforts on development of efficient geometric algorithms for the
gathering task amidst obstacles when, in particular, a distance
criterion is employed. It is worth noting that the problem
studied here is different from the classical path finding (or
shortest path calculation) problem amidst obstacles since the
destination is known in the latter. While there are some efforts
in the domain of operations research with respect to facility
location [10], [7], [11], obstacles have not been considered
in these works. A detailed discussion of related literature is
presented in section II.

The organization of the rest of this paper is as follows.
Section III introduces the terminology used in the paper.
Section IV presents the efficient algorithm for computing PG

for a pair of agents amidst n obstacles. Section V develops
the low-complexity algorithm for k agents. The extension to
dynamic obstacles is presented in section VI. Experimental
results are given in section VII. Section VIII concludes the
paper.

II. RELATED WORK

The focus of this paper is on developing fast geometric
algorithms for the gathering problem in the presence of
obstacles and the minimax distance criterion. To this end,
we first review prior work in the domains of computational
geometry and operations research on related problems. We
then summarize recent work in multi-agent consensus.

A. Prior Work in Geometric Algorithms

Work on minimax criterion has been reported as early as
1960s in the context of location theory [10]. The usefulness
of the minimax criterion in defence applications has been
addressed in [12] where the author mentions the advantage
of minimizing the maximum distance (as opposed to the total
or average distance) to trouble spots to save time in the context
of deployment of airborne soldiers.

The authors in [7] present a finite solution procedure for the
minimax problem (in the absence of obstacles) for Euclidean
and rectilinear distance measures based on geometric argu-
ments. No asymptotic complexity analysis is available in [7].
The authors in [13] generalize the work in [7] by considering
the lp metric and establish the efficiency of their procedure
via actual computation times. An O(n(log n)3(log log n)2)

algorithm has been reported in [11] to find a point in two
dimensions that minimizes the maximum weighted distance
to a point in a set of n given points. However, obstacles
have generally not been considered in these formulations. The
authors in [14] consider meeting of a pair of agents with
line of sight communication between them and present an
O(n3 log n) algorithm under the minimax metric where n is
the total number of vertices. A provably correct algorithm for
rendezvous of agents (equipped with omni-directional range-
limited visibility sensors) in a simply connected, non-convex
environment has been reported in [15]. In general, efficient
geometric algorithms (with low asymptotic complexity) for
gathering of a large number of agents amidst multiple static
obstacles incorporating a distance criterion do not appear to
be available. Further, no moving objects have been considered.

B. Prior Work on Consensus in Multi-Agent Systems

Early work in multi-agent consensus includes [16], [17] and
[18]. An article by Cao et al. [9] summarizes the contributions
in the last decade to distributed multi-agent coordination. Han
et al. [19] provide necessary and sufficient conditions for
robust first and second-order consensus for a class of multi-
agent dynamical systems. Consensus in multi-agent systems
with sampled position and velocity data has been studied in
[20]. The flocking problem for multi-agent systems is studied
via model predictive control in [21]. The authors in [2] present
the state of the art in applications of industrial agents. They
point to the potential of multi-agent coordination in military,
defense and humanitarian relief applications. Sampled-data
based event-triggered control for networked systems has been
recently explored in [22]. The authors in [23] examine the
key contributing factors to acceptance of agents in industrial
environments.

In summary, considerable work has been done on control
and related aspects of consensus in multi-agent systems.
However, it is valuable to explore geometric aspects (such as
distance optimization) pertaining to multi-agent coordination
since they have a direct impact on the energy consumption.
Further, it is of interest to examine the complexity (in terms
of area, weight etc.) of an efficient hardware realization.

III. ASSUMPTIONS AND DEFINITIONS

A. Agents and Their Characteristics

We assume, throughout this paper, identical agents. No
communication with a central controller is required to meet the
twin objectives of collision avoidance and minimax distance
criterion. However, inter-agent communication is permitted.
In particular, one of the agents accepts the initial location
information from all other agents and computes the gathering
point PG. This point is then communicated back to the (other)
agents. All the agents are assumed to have knowledge of the
locations of the static obstacles.

The agents are assumed to be equipped with position en-
coders for localization, on-board distance sensors for handling
dynamic obstacles and communication modules for interac-
tions between agents. Details regarding the definition of the
distances are presented in section III-B. Additional information
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on how the agents handle different types of obstacles are
provided in sections VI and VII.

B. Definitions

The minimax point (denoted by PM ) for k agents located
at {P1(x1, y1), P2(x2, y2), · · · , Pk(xk, yk)} is defined as the
point that minimizes the maximum Euclidean distance from
each of the k agents as given in Eq. (1).

PM (x, y) = min{max
1≤i≤k

√
(x− xi)2 + (y − yi)2} (1)

It is worth noting that, for a set of three non-collinear agents
P1, P2 and P3, the minimax point PM corresponds to the
circumcentre of the triangle formed by P1, P2 and P3 if the
triangle (formed) is acute-angled. When P1, P2 and P3 form
a right triangle or an obtuse-angled triangle, PM corresponds
to the midpoint of the longest side.

P1 P2

P

PG

Q1

Q2

Q3
Q4

Q5

Q6

Q7

PM

R1R2
S

S

Fig. 1. Gathering point PG for a pair of agents

When obstacles are introduced, the calculation of the point
that minimizes the maximum distance is more complex. The
notion of gathering point for this scenario is expressed by
Definition 1.

Definition 1: Gathering point PG for k agents amidst n
static obstacles is defined as the point external to all obstacles
attaining the minimum of maximum of distances computed
from k agent locations (to various points in the plane). �

The gathering point, PG, for two agents in the presence of
a non-convex polygonal obstacle is illustrated in Fig. 1. We
note that there are two paths between the agents through the
vertices of the obstacle and each of these is a candidate for the
shortest path. PG corresponds to the mid-point of the shortest
of the two paths from agent P1 to agent P2 (a proof of this
is presented in section IV). The midpoint of the line segment
P1P2 would be the minimax point, PM , if there had been
no obstacles. The significance of PG can be observed from
the difference in distances to PM and PG from their initial
location.

In the presence of static polygonal obstacles, agents move
from one obstacle vertex to another before arriving at the
gathering point PG. The distance travelled by an agent from
its initial location to an intermediate location (for instance, a

vertex of an obstacle) may be thought of as the weight on the
agent at that intermediate location. For instance, in Fig. 1, the
weight on agent P1 at vertex Q6 is the distance travelled by
P1 to reach Q6 (which is (P1Q7 +Q7Q6)). Using the notion
of weights, we can define a weighted minimax point (denoted
by PW

M ) as per Eq. (2).

PW
M (x, y) = min{max

1≤i≤k
(
√

(x− xi)2 + (y − yi)2+di)} (2)

The definition in (2) assumes k agents with weights given
by di, i ∈ {1, 2, · · · , k}. PW

M is used to compute PG in the
algorithm in section V.

The development of efficient algorithms also requires the
notions of visibility and last turn since agents need to avoid
collisions with the interior of the obstacles. Two arbitrary
points, T1 and T2, are visible to each other, if the line segment
joining T1 and T2 does not intersect the interior of any
obstacle. For instance in Fig. 1, P1 is visible to Q1 but not to
P2. The last turn location is defined as the point (vertex) that
an agent reaches before becoming visible to the destination
point. The last turn location for agent P2 (to reach P ) in Fig.
1 is Q1 while the last turn location for agent P1 to reach PG

is Q7.

IV. COMPUTING PG FOR A PAIR OF AGENTS AMIDST n
POLYGONAL OBSTACLES

In this section, we consider one generalization of the case
discussed in section III. In particular, we consider two agents
(located at P1 and P2) and n obstacles (each with a total of
c vertices where c is a constant) and present an O(n log2 n)
time algorithm to compute PG.

The key ideas are as follows. The gathering point PG for
a pair of agents is shown in Fig. 1. Let the curve S be the
locus of all points that are equidistant to P1 and P2. Thus,
on one side of S lies region R1 (shown in blue), that is the
collection of all points in the plane farthest from P1. Therefore,
the maximum of distances from P1 and P2 to any point in
R1 would be the distance from P1. Minimizing this over R1

brings one back to the curve S. The same applies to region R2

(shown in red). The location of gathering point PG can thus
be narrowed down to curve S. Lemma 1 extends this idea to
n obstacles.

Lemma 1: The gathering point PG for two agents moving
amidst n polygonal obstacles is the point on the shortest path
(from one agent to another) that is equidistant from both
agents.
Proof: This can be established as an extension of the no
obstacles case where PM corresponds to the mid-point. When
obstacles are present, the path joining the two agents need
not be just as one piece: it is, in general, a collection of
segments. The total length of the collection is of interest and
the location corresponding to half this length determines a
potential gathering point. Since several such collections can
exist, we choose the one that has the smallest total length
which corresponds to the shortest path. The midpoint of the
shortest path corresponds to PG. Q.E.D.
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We now present Algorithm Gathering point pair that uses
Lemma 1 to compute the gathering point for two agents amidst
n polygonal obstacles. We assume that P1 first communicates
its location to P2. P2 then uses the following algorithm to
compute the gathering point, PG, and transmits the same back
to P1.
Algorithm Gathering point pair
INPUT: Two distinct, initial locations of the agents, denoted
by P1, P2. n non-intersecting polygonal obstacles with c
vertices each, labeled (O1, O2, · · · , On).
OUTPUT: Gathering point PG

Step 1: Compute the shortest path (SP ) from P1 to P2 amidst
n polygonal obstacles.
Step 2: Compute the mid point of SP while moving from one
vertex to the other starting from P1. Output this midpoint as
the gathering point PG.

Theorem 1: The time complexity of Algorithm Gather-
ing point pair is O(n log2 n).
Proof: Step 1 of the algorithm computes the shortest path
from P1 to P2 amidst n obstacles with c vertices each (where
c is a constant) in O(n log2 n) time based on the approach
in [24]. Given the shortest path, Step 2 takes O(n) time to
compute the point equidistant from P1 and P2 (since the
O(n) vertices [24] along the shortest path are available from
Step 1 and we can obtain the length of each segment in the
path in constant time). Thus, the overall time complexity of
Algorithm Gathering point pair is O(n log2 n). Q.E.D.

PG

P1 P2

Obstacle

O
b
st
ac
le

O
b
st
ac
le

Q1

Q2

S

S

Fig. 2. Gathering point (PG) for two agents in the presence of three polygonal
obstacles

Fig. 2 illustrates the gathering point PG for two agents
located at P1 and P2 amidst three obstacles with four vertices
each. Curve S is the collection of points equidistant from the
two agents P1 and P2. Gathering point PG is the point of
intersection of this curve S and the shortest path from P1 to
P2. It is worth noting that Algorithm Gathering point pair
computes this gathering point PG without the need to compute
the curve S, thus saving on computational time.

Remark 1: In step 1 of Algorithm Gathering point pair,
the shortest path from P1 to P2 need not be unique. So,

in principle, there can be multiple choices for the gathering
points. However, to ensure that the agents gather at one
point, one of the shortest paths (when there are many) is
chosen by the agent at P2. The midpoint of this path is then
communicated to the agent at P1. In the implementation, this
is accomplished by an array which stores (and updates) the
shortest path. It is worth noting that this approach obviates
the need for a central controller.

We have so far assumed only a pair of agents. We next
consider generalization to k agents moving amidst n polygonal
obstacles.

V. EXTENSION TO k AGENTS MOVING AMIDST n
OBSTACLES

In this section, we present an O(k2 + kn log2 n) time
algorithm for calculating PG of k agents amidst n obstacles.
Each obstacle is assumed to have c vertices where c is a
constant.

We begin by presenting the main ideas for computation
of PG in section V-A. These results capture a generalized
scenario where the points are any arbitrary locations in the
plane. Similarly, the weights at these locations are merely non-
negative real numbers.

A. Main Ideas

For two agents moving amidst obstacles, the calculation of
PG can be pursued by dividing the plane into two regions,
each being farthest from one of the two agents. As the number
of agents increases to k, the division of the plane into k
regions becomes complex. We therefore develop an alternate
procedure based on the notion of weighted minimax point
(PW

M ) defined in section III. We first present three results
(Lemmas 2, 3 and 4) to compute PW

M for two, three and
k agents with arbitrary weights associated to their locations.
These form the basis for developing an algorithm to compute
PW
M . The gathering point, PG, is obtained using PW

M .
Lemma 2: For two agent locations P1 and P2 with weights

d1 and d2 respectively, the weighted minimax point PW
M is

given by

PW
M =

{
Pi, if di ≥ (l12 + dj)

P12 otherwise
(3)

for i, j ∈ {1, 2} with i 6= j. l12 is the Euclidean length of the
line segment P1P2 and P12 = l12(P1+P2)+(d1−d2)(P1−P2)

2×l12
.

Proof: Let P be an arbitrary point on line segment P1P2 that
divides it in the ratio r : (l12 − r), 0 ≤ r ≤ l12. Thus, the
distances from P1 and P2 to P are given by

dPP1 = d1 + r

dPP2 = d2 + l12 − r
(4)

Without loss of generality, let the first condition in Eq. (3) be
expressed as d1 ≥ (l12 + d2). For any non-negative constant
z, we thus have

d1 − z = l12 + d2

⇒ dPP1
= d1 + r

⇒ dPP2
= d1 − z − r

(5)
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Thus, max({dPP1
,dPP2

}) is dPP1
. The minimum for dPP1

occurs when r = 0 which indicates that the minimax point
is P1. Similarly, for the condition d2 ≥ (l12 + d1), P2 is the
minimax point. This proves the first condition.

The minimax point in the absence of the constraint de-
scribed in Eq. (5), is the point on line segment P1P2 that
is equidistant from P1 and P2. We have from Eq. (4),

dPP1
= dPP2

⇒ d1 + r = d2 + l12 − r

⇒ r =
l12 + (d2 − d1)

2

(6)

The expression for P12 then follows from the section formula
which divides line segment P1P2 in the ratio (r : l12 − r)
where r is given by Eq. (6). Q.E.D.

We now present Lemma 3 to compute PW
M for three agents

with arbitrary weights at their locations. We denote by lij
the length of line segment PiPj . Further, Pij is the weighted
minimax point of agent locations Pi and Pj (with weights
di, dj) computed using Lemma 2. dij is the weight computed
at Pij . The length of line segment from Pij to Pk is denoted
by ij lk. It is worth noting that the locus of points equidistant
from two agent locations with associated weights is a branch
of a hyperbola (explained further in proof of Lemma 3).

Lemma 3: For three agent locations P1, P2 and P3 with
weights d1, d2 and d3 respectively, the weighted minimax point
PW
M is given by

PW
M =


Pi, if di ≥ (lij + dj) & di ≥ (lki + dk)

Pij , if dij ≥ (ij lk + dk)

P123 otherwise
(7)

for i, j, k ∈ {1, 2, 3} with i 6= j 6= k. P123 is the point of
intersection of the three branches of hyperbolas constructed
on the three sides with their respective weights.
Proof: The first two conditions follow from the proof of
Lemma 2. When these two conditions do not apply, the
minimax point is the point equidistant to the three agents
with their corresponding weights. The locus of points (P )
equidistant to two agents P1, P2 (with weights d1, d2) is a
hyperbola as shown in Eq. (8).

PP1 + d1 = PP2 + d2

⇒ PP1 − PP2 = d2 − d1
(8)

The point equidistant to the three agents (which corresponds
to PW

M ) is identical to the point of intersection of the three
hyperbolas constructed on the three sides formed by initial
locations of agents. Q.E.D.

Figures 3 (a) and 3 (b) illustrate the two cases in Lemma 2
for computing the weighted minimax point for two agents with
non-zero weights. Fig. 3 (c) illustrates the last case in Lemma
3 and various terms used in computing the same. Numerical
illustrations of Lemmas 2 and 3 are presented in Appendix A.
It is worth noting that the conditions in Lemma 3 correspond
to cases where either one or two of the points are sufficient

(b) (c)

P1(0,0)

P2(9,3)

P3(4,9)

P12

P23
P31

P1(0,0) P2(10,0)

P123

d12=9
d1=1

d2=3

d3=5

d1=2

d2=6

PM(7,0)

l12
23l1

l12

P1(0,0) P2(10,0)

d1=14 d2=2

PM(0,0)

l12=10

(a)

(d1>l12+d2)

W

W

Fig. 3. Minimax point for two and three agents with non-zero weights

to compute the weighted minimax point. We now extend the
ideas to k agents.

Lemma 4: The weighted minimax point of k agents is
identical to the weighted minimax point of three agents (among
k agents) calculated using Lemma 3.
Proof: When the weights on all the agents are equal, it
follows from [25] that three points suffice to determine the
weighted minimax point. If the weights are unequal, the last
case in Lemma 3 holds. When there are more than three
agents, the hyperbolas do not intersect (in general) at a single
point. From the properties of a polygon, it follows that a
maximum of three hyperbolas can intersect at a single point.
The agents corresponding to these three hyperbolas determine
the triplet that constitutes the weighted minimax point. Q.E.D.

The remaining k− 3 points satisfy the following condition:

dPM
≥ di + liPM

(9)

where dPM
is the weight at the minimax location, di is

the weight at the ith location and liPM
is the length of

the line segment joining Pi and PM . Thus, these points do
not play a role in computing the minimax point. We now
present Algorithm Minimax point weighted to compute the
weighted minimax point for k agents, using Lemmas 3 and 4.

Algorithm Minimax point weighted
INPUT: k distinct initial locations of the agents denoted by
P1, P2, · · · , Pk. Weights at these k locations are denoted by
the set D = {d1, d2, · · · , dk}.
OUTPUT: Weighted minimax point, PW

M

Step 1: Choose the largest, second largest and third largest
values from D and denote by (da, db, dc) respectively where
a, b, c ∈ {1, 2, · · · , k} and a 6= b 6= c.
Step 2: Compute QM as the weighted minimax point of
three agent locations Pa, Pb, Pc with weights (da, db, dc) using
Lemma 3. Let dm be the corresponding weight at QM .
Step 3: Return QM as the weighted minimax point PW

M if
Eq. (10) holds (where lim represents the Euclidean distance
between Pi and QMand Stop.

dm ≥ lim + di ∀ i ∈ {1, 2, · · · , k} (10)
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Otherwise, choose an agent location and its weight Pd, dd
(where d ∈ {1, 2, · · · , k}) that does not satisfy Eq. (10) and
proceed to Step 4.
Step 4: Compute weighted minimax points for the three
combinations (Pa, Pb, Pd), (Pa, Pc, Pd) and (Pb, Pc, Pd)
using Lemma 3. Denote these points as Qx, Qy , Qz and
their weights as dx, dy, dz respectively. Replace dm with
the maximum of dx, dy, dz and QM with its corresponding
minimax point. Replace (Pa, Pb, Pc) with the corresponding
combination of dm and proceed to Step 3. �

Fig. 4 illustrates the algorithm for five (k = 5) agent
locations. Step 1 picks three agent locations P1, P2, P4 with
highest weights (Fig. 4 (a)) and denotes them as (Pa, Pb, Pc).
Step 2 computes the weighted minimax point (QM ) and its
weight (dm) for (Pa, Pb, Pc) using Lemma 3. QM is the point
of intersection of three branches of hyperbolas constructed on
each side of 4PaPbPc (Fig. 4 (a)).

Step 3 then uses Eq. (10) to check if QM minimizes
the maximum of distances to all agent locations. Since P3

does not satisfy Eq. (10), P3 is renamed as Pd (Fig. 4
(b)). Step 4 computes the weighted minimax point for the
three combinations (Pa, Pb, Pd), (Pa, Pc, Pd) and (Pb, Pc, Pd)
and identifies that the combination with highest weight is
(Pa, Pb, Pd). Fig. 4(b) illustrates Qx as the point of intersection
of the three branches of hyperbolas for 4PaPbPd. Eq. (10) of
Step 3 now reveals that Qx is indeed the weighted minimax
point for all agent locations and is thus the output (PW

M ).

W

(a) (b)

P1(1,3)
d1=3

P2(7,2)
d2=4

P3(10,12)
d3=2

P4(3,10)
d4=2

P5(4,7)
d5=0

P1
P2

P3
P4

P5

Pa
Pb

Pc

Pa
Pb

Pc

Pd

QM(5.1,4.9)
dM=7.5

Qx

PM(5.6,6.7)
dM=8.9

QM

Fig. 4. Illustration of Algorithm Minimax point weighted (a) Steps 1 and
2 (b) Steps 3 and 4

The convergence of Algorithm Minimax point weighted
follows from the fact that the distance value dm increases with
each iteration. Since there are a finite number of points (k),
the algorithm terminates when dm reaches its maximum value.
The complexity of Algorithm Minimax point weighted is
expressed by Theorem 2.

Theorem 2: Algorithm Minimax point weighted takes
O(k2) time where k is the number of agents.
Proof: Step 1 computes the first, second and third maximum in
O(k) time. Step 2 uses Lemma 3 to compute PW

M in constant
time. Step 3 verifies the condition in Eq. (10) for all k agents
and thus takes O(k) time. Step 4 computes three minimax
points and then repeats Step 3 at most k times, thus taking
O(k2) time. Hence, the overall complexity is O(k2). Q.E.D.

B. Efficient Algorithm for k-Agent Gathering
Algorithm Minimax point weighted presented in section

V-A is used in developing an efficient algorithm to compute
the gathering point PG. Polygons formed from the vertices of
the obstacles and the agent locations contribute to the location
of PG. In particular, the gathering point turns out to be the
weighted minimax point of one of the polygons constructed
from the obstacle vertices and agent locations (an outline of
the proof of this is part of Lemma 5).

However, a direct algorithm based on this idea has high
computational complexity. This is in view of the fact that for
k agents moving amidst n polygonal obstacles with c vertices
each, we have up to cn+kPk polygons to consider (and shortest
paths from the agents to the vertices of these polygons).

Fig. 5 illustrates the gathering point for six agents moving
amidst three polygonal obstacles (with four vertices each). One
of the 4∗3+6P6 combinations is shown in Fig. 5 as the polygon
Q1Q2Q3Q4Q5Q6. Weight di (where i ∈ {1, 2, · · · , 6} ) at a
location Q, corresponds to the distance travelled by agent
Pi from its initial location to Q. This can be observed in
Fig. 5 where d3 (at Q3) is the distance travelled by agent
P3 from its start location to Q3, which is the length of the
line segment P3Q3. The weighted minimax point PW

M of this
polygon Q1Q2Q3Q4Q5Q6 has the least maximum distance
value and corresponds to the gathering point PG.

Obstacle

P1 P2

P3

P4
P5

P6

Q1

Q2

Q4
Q5

Q6
Q3

PG

PMd6

d1 d2

d3

d4
d5

Fig. 5. PG and PM for six agents amidst three polygonal obstacles

The proposed efficient algorithm is based on the following
observation. The point PM , which is the minimax point of k
initial locations of agents with zero weights, is ‘on the same
side’ as PG as illustrated in Fig. 5. It is worth noting that
PM and PG are both visible to the last turn locations to PM

(which are Q1, Q2, Q3, Q4, Q5, Q6). Thus, by identifying the
last turn locations to PM , one can immediately identify the
polygon Q1Q2Q3Q4Q5Q6 whose weighted minimax point is
the gathering point PG. Therefore, the search for the gathering
point PG can be reduced from multiple polygons to one. This
observation is established formally in Lemma 5.

Lemma 5: Let PM be the minimax point for k agents
with zero weights and PG be the gathering point amidst n
polygonal obstacles. Further, let Q1, Q2, · · · , Qk be the last
turn locations for these k agents attempting to meet (amidst
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obstacles) at the minimax point PM .
If PM lies external to all obstacles, the weighted minimax

point of these last turn locations is the gathering point PG.
Proof: Let the maximum of distance values to PM and an
arbitrary point (denoted by P ) be rM and rP respectively. It
follows from Eq. (1) that the maximum of distances is lowest
for PM compared to any arbitrary point in the plane (P ). We
thus have,

rM ≤ rP (11)

Since the distance between two points generally increases with
introduction of obstacles, we have Eq. (12).

rM ≤ sM

rP ≤ sP
(12)

where the maximum of distances (lengths of the shortest path
from agents’ locations) to PM is sM and to P is sP . Further,
consider Q1, Q2, · · · , Qk to be the last turn locations of agents
attempting to gather at PM . Let the weighted minimax point of
Q1, Q2, · · · , Qk be PW

M and the maximum of distances value
to PW

M be sW . In order to prove that PW
M is the gathering

point PG, it is adequate to show

sW ≤ sP (13)

It follows from Eq. (2) that the weighted minimax point of
the polygon constructed using last turn locations has the lower
maximum of distances value compared to any other point with
same last turn locations. We thus have

sW ≤ sM (14)

It follows from Eq. (11) that the maximum of distances value
to PM (which is rM ) will increase with addition of obstacles
(Eq. (12)). The only point with lower maximum of distances
value compared to PM would be the weighted minimax point
of its last turn locations as given by Eq. (2) and Eq. (14).

Therefore, the point with lowest maximum of distances
value in the presence of obstacles is the weighted minimax
point PW

M which is in turn the gathering point PG as given
by Definition 1. We thus have Eq. (13). Q.E.D.

Lemma 5 can be used in developing Algorithm Gather-
ing point efficient that computes the gathering point PG for
k agents moving amidst n obstacles with c vertices each. We
assume agents at P1, P2, · · ·Pk−1 transmit their locations to
the agent at Pk which then executes the following algorithm
and computes the gathering point PG. The location of PG is
then communicated back by Pk to all the other agents, namely
P1, P2, · · · , Pk−1.
Algorithm Gathering point efficient
INPUT: k distinct, initial locations of the agents denoted by
P1, P2, · · · , Pk. n non-intersecting polygonal obstacles with c
vertices each, denoted using the set O = {O1, O2, · · · , On}.
OUTPUT: Gathering point PG.
Step 1: Calculate the minimax point PM of polygon
P1P2 · · ·Pk (with zero weights). Verify if PM is contained
in any of the n obstacles. Identify the obstacle (if any) that
contains PM , as Oj (where j ∈ {1, 2, · · · , n}) and exclude it
from the set O.

Step 2: Calculate the shortest path for the k agents to reach
PM amidst the obstacles. Denote the last turn locations in the
shortest paths before reaching PM as Q1, Q2, · · · , Qk and the
corresponding path lengths as d1, d2, · · · , dk.
Step 3: If Oj is empty, goto Step 4 else goto Step 5.
Step 4: Replace PM with the weighted minimax point
(PW

M ) of polygon Q1Q2 · · ·Qk computed with weights
d1, d2, · · · , dk using Algorithm Minimax point weighted.
Compute the shortest paths for k agents from initial locations
to PM . Identify the last turn locations to reach PM as
R1, R2, · · · , Rk and the distances along shortest paths to reach
them as f1, f2, · · · , fk. Go to Step 6.
Step 5: Replace PM with the gathering point of polygon
Q1Q2 · · ·Qk computed with weights d1, d2, · · · , dk and one
polygonal obstacle Oj . Include Oj back into the set O and
compute the shortest path from initial locations to PM . Denote
the last turn locations as R1, R2, · · · , Rk and the correspond-
ing lengths of shortest paths as f1, f2, · · · , fk.
Step 6: If Ri = Qi ∀ i ∈ {1, 2, · · · , k}, output PM as the
gathering point PG and Stop. Else, replace Qi with Ri and di
with fi ∀ i ∈ {1, 2, · · · , k}. Exclude Oj (if any) from the set
O and return to Step 3.

The correctness of this algorithm follows from Lemma 5.
Algorithm Gathering point efficient is illustrated in Fig. 5.
Steps 1 and 2 compute the minimax point PM and paths from
agents’ initial locations. Since PM is not contained in any
obstacle (Step 3), Step 4 computes the weighted minimax
point (PG in Fig. 5) of last turn locations Q1, Q2, · · · , Q6.
Recomputing shortest paths to PG does not affect the last turn
locations (Step 6). Thus weighted minimax point computed in
Step 4 is output as the gathering point PG. The convergence of
this algorithm follows from the fact that there are only a finite
number of polygonal obstacles to be considered in computing
the gathering point.

Theorem 3: The asymptotic time complexity of Algorithm
Gathering point efficient is O(k2+kn log2 n) where n is the
number of obstacles with c vertices each and k is the number
of agents.
Proof: Step 1 takes O(k2) time for computing the minimax
point as given by Theorem 2. It takes additional O(n)
time for checking if PM lies in any of the n obstacles.
Computation of shortest paths to PM from k agents in Step
2 takes O(kn log2 n) as given by [24]. Computation of
minimax point in Steps 4 and 5 once again take O(k2) time
and the corresponding shortest paths take O(kn log2 n) time.
Step 6 returns the gathering point PG or reassigns variables
for further computation. Thus, the overall time complexity is
O(k2 + kn log2 n). Q.E.D.

Remark 2: Algorithm Gathering point efficient stops with
calculation of the gathering point PG. The task of computing
the shortest path to PG is left to the individual agents which
can perform this in parallel. This has the advantage of keeping
the time complexity of the algorithm low while at the same
time, reducing the information to be transmitted (by Pk) to
each of the k − 1 agents.
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A special case for the algorithm is when the minimax
point, PM , is contained within an obstacle. This is handled
without any increase in the overall time complexity, viz.
O(k2 + kn log2 n) and corresponds to computations in step
5 of the algorithm.

P3

PM

P1

P2

P4 PG
Q2

Q3

Q1

Fig. 6. Gathering point PG is identical to agent location P4

Another special case is illustrated in Fig. 6. Here, the
gathering point PG (computed by the agents) coincides with
initial location of one of the agents (P4). While agent P4

remains at PG, the remaining agents follow the shortest path
to PG.

The information transmitted between various agents leads
to a communication complexity of O(k) [26], [27]. Appendix
B provides further details on the length of information com-
municated.

VI. ENHANCEMENT TO ENVIRONMENTS WITH DYNAMIC
OBSTACLES

In an industrial environment involving multiple hardware
agents, one (moving) agent could itself be an obstacle to
another. Further, there may be automated guided vehicles and
humans moving between stations. In the domestic setting too,
dynamic obstacles are common. The algorithms presented
so far handle k agents moving amidst static obstacles with
distance optimization as the goal. In this section, we answer
the following question: Can the paths generated for each agent
avoiding collision with the interiors of the static obstacles be
used as such when handling dynamic obstacles ?

We present an algorithm for path following in the presence
of dynamic obstacles that enables retaining the location (of
PG) computed with merely the static obstacles by Algorithm
Gathering point efficient. It is assumed that the agents are
equipped with distance sensors and communication modules.
As indicated in Remark 2, the agents calculate the shortest path
(in parallel) to PG amidst static obstacles. Dynamic obstacles
in the path of an agent to PG are detected by the distance
sensor.

Every agent that encounters an obstacle broadcasts its cur-
rent location and receives the locations of similarly obstructed
fellow agents. The agents use this information to identify if
they are obstructing each other. In such a scenario, the agent
with the highest index number proceeds further while the other
agents wait for their turn.
Algorithm Path Following
INPUT: Initial locations of all agents and static obstacles.
Gathering point PG and paths of various agents to PG.
Information from distance sensor on each agent.

OUTPUT: All agents gather at PG

Step 1: Translate each agent along its corresponding path to
PG until the distance sensor on an agent (say Pi) detects an
obstacle. If all agents arrive at PG, Stop.
Step 2: Compare the location of detected obstacle with the
already stored information on static obstacles. In case of a
match, conclude that the detected obstacle is indeed a static
obstacle and return to Step 1. Else proceed to Step 3.
Step 3: Broadcast the current location of the agent (Pi)
along with its index number (i) to fellow agents and wait for
reception of a similar message from a fellow agent.
Step 4: If Pi does not receive a reply, conclude that the
detected obstacle is an unknown dynamic obstacle (not a
fellow agent) and proceed to Step 7.
Step 5: If Pi receives a reply from one or more fellow agents,
compare their locations to verify if the agents are obstructing
each other. If True, proceed to Step 6, else proceed to Step
7.
Step 6: If the index i is greatest among all the obstructing
agents (received in Step 5), conclude that the agent Pi should
proceed further and return to Step 1. Else proceed to Step 7.
Step 7: Stop the current agent (Pi) and monitor distance sensor
readings. If the sensor continues to detect an obstacle, return
to Step 3. Else return to Step 1.

Remark 3: The choice to stop momentarily is adopted so that
the distance criterion and therefore the energy considerations
are met. Other approaches to handle dynamic obstacles, in
general, lead to greater travel distance for one or more agents.

VII. EXPERIMENTAL RESULTS

In this section, we present the details of an efficient
hardware realization of the algorithms on small robots that
act as autonomous agents. The hardware on the systems is
small so as to keep cost, weight and power consumption low.
Each robot is equipped with an 8-bit, 20 MHz ATmega328P
microcontroller that executes the algorithms (some numerical
computation aspects are presented in section VII-A). Further,
position information is gathered via two MOC7811 sensors
on each robot. These are inexpensive and adequate for small
agents. The robots are also equipped with an ultrasonic sensor
for dynamic obstacle detection (ultrasonic sensors are simple,
low-cost and lightweight). The entire arrangement is powered
by a 12V, 1.3AH sealed maintenance-free battery. The commu-
nication among agents is realized with the help of Xbee-PRO
RF modules. These units are low cost and low power wireless
sensor networks operating at 2.4 GHz with a transmission
range of up to 90m.

A. Numerical Aspects in Implementation of the Algorithms on
Resource-Constrained Platforms

The proposed algorithms involve symbolic computation to
arrive at the gathering point PG. This can be observed in
Lemma 3 where the minimax point is found by solving two
or more second degree equations in two variables. The AT-
mega328P microcontroller supports 32KB of Flash Memory,
2KB SRAM and 1KB EEPROM. Assuming 4 bytes of storage
for each of the x and y coordinates, a maximum of 256
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vertices can be handled by the microcontroller simultaneously.
Since microcontrollers are not equipped to perform symbolic
computation, we develop a numerical procedure to solve the
second degree equations in two variables.

The last case of Lemma 3 gives the minimax point as the
point of intersection of three hyperbolas as shown earlier in
Fig. 3 (c). The point of intersection of any two curves (denoted
by L1 and L2) is the point at which both curves have a function
value equal to 0. Further, if one curve (for example, L1) is
sampled at a fixed value as shown in Fig. 7, it gives a set of
points (denoted by Si ∀ i ∈ {1, 2, · · · ,m}, m ∈ Z+) on the
curve L1. The values of these points (Si) when substituted
in the curve L2 determine their proximity to the point of
intersection. The point in Si with the substituted value closest
to zero is the best approximation of the point of intersection.

PM(45,57)

P1(0,0)

P2(90,30)

P3(40,90)

d1=10

d2=30

d3=50

P12

P23P31

L1

L2

L3

S12(30,43)

S13(33,44)

Fig. 7. Numerical aspects in implementation of the algorithms

The selection of sampling distance depends on (i) storage
space of the microcontroller and (ii) size of the robots. The
32KB flash memory of ATmega328P allows for a maximum
of 4096 points. If the points under consideration range a
maximum of 10m on X and Y axes, the allowable sampling
distance is ( 10×3

4096 ) which is 0.7cm. However, the (robotic)
agents used in the experiments have an actual resolution of
only 3cm. We thus have a sampling distance of 3cm for all
the experiments conducted in the following section.

Fig. 7 illustrates this procedure for the locations and weights
given. The three hyperbolas L1, L2 and L3 are converted into
collection of points with a uniform separation of 3cm on the
X-axis. Two sampled points S12 and S13 are shown in Fig. 7.
The point at which its value is closest to zero is the minimax
point (45, 57). This compares well with the minimax point
(44.82, 57.47) when computed symbolically using MATLAB.

B. Summary of Experiments

We begin with an experiment involving four agents moving
amidst three static obstacles. Initial positions of the agents at
P1, P2, and P3 are transmitted to the agent at P4 which then
uses Algorithm Gathering point efficient to compute PG.
Appendix B describes briefly the communication aspects. Fig.
8 captures this experiment. The four initial locations are shown
in Fig. 8(a). Once the agents have the location of gathering
point PG, they orient themselves towards it as shown in Fig.
8(b). Figures 8(c) and 8(d) show the last turn locations Q1, Q3

of agents starting at P1 and P3. Gathering of agents is shown
in Fig. 8(d).

P1

P2

P3

P4

(a) Initial position

P1

P2

P3

P4

(b) Agents orient themselves

P1

P2

P3

P4

Q1

(c) Reorientation to reach PG

P1

P2

P3

P4

Q1

Q3

(d) Gathering achieved

Fig. 8. Gathering of four agents in the presence of three static obstacles

We now present another experiment where an agent en-
counters a fellow agent on its path to PG. Fig. 9 summarizes
this experiment. Initial locations of three agents and one static
obstacle are shown in Fig. 9(a). As P1, P2 and P3 start to move
towards PG, the ultrasonic sensor mounted on P3 detects P2

as an obstacle (shown in Fig. 9(b)). P3 halts (and waits) as
given by Algorithm Path Following until P2 is no longer an
obstacle (Fig. 9(c)) and then continues to move towards PG.
Agents achieve gathering as shown in Fig. 9(d).

P1 P2

P3

(a) Initial positions

P1 P2

P3

(b) P2 obstructs P3

P1 P2

P3

(c) P3 resumes moving towards PG

P1 P2

P3

Q3

(d) Gathering achieved

Fig. 9. Gathering of three agents while one agent obstructs another’s path

Remark 4: As observed from this experiment, an agent
detecting another agent as an obstacle is also handled by
Algorithm Path Following presented in section VI. Distance
sensors on the agents facilitate detection of dynamic obstacles
and the agent that arrives first at a location common to the
path of two agents proceeds first while the other agent waits.

Additionally, we have performed an experiment on gath-
ering of two agents amidst obstacles that makes use of
Algorithm Gathering point pair. The study has also included
experiments with humans moving, with larger number of static
obstacles and with multiple agents approaching a location
simultaneously.
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VIII. CONCLUSIONS

A multi-agent gathering problem that is of interest in cyber-
physical systems and welfare support systems is studied in this
paper. Efficient geometric algorithms are presented for finding
the gathering point of two or more agents amidst obstacles
minimizing the maximum Euclidean distance of travel of the
agents. An efficient hardware realization of the algorithms on
multiple small robots is also presented.

We have assumed identical agents in this paper. A natural
extension of the problem considered in this paper would be to a
scenario where the agents are non-identical and have different
velocity profiles. It is worth noting that the gathering point
remains the same since it is independent of the velocities of the
agents. An interesting problem would then be to compute the
point in space (called, for example, as time gathering point)
where the agents take minimum time to arrive while taking
their respective velocity profiles into consideration. When
dynamic obstacles are involved, the agents could recompute
the time gathering point and move towards it in order to
minimize the total time taken for all agents to meet. It would
also be of interest to explore the problem of computing a point
to gather that would simultaneously optimize the time as well
as the distance travelled.

IX. APPENDIX A
We now present numerical illustrations to compute the

weighted minimax point PW
M as given by Lemmas 2 and 3. In

Fig. 3 (a), P1(0, 0) and P2(10, 0) describe locations of agents
with weights d1 and d2 given by 14 and 2 respectively. The
length of line segment P1P2, namely l12, is 10 units. Since
d1 > l12 + d2, it follows from Lemma 2 that the weighted
minimax point PW

M is the agent location P1.
In Fig. 3 (b), agents are located at P1(0, 0) and P2(10, 0)

with weights d1 and d2 given by 2 and 6 respectively. With
these values, we have d1 < l12+d2 and d2 < l12+d1. It thus
follows from Lemma 2 that the weighted minimax point PW

M

is P12. For computation of P12, we treat agent locations P1

and P2 as vectors and all other entities (d1, d2, l12) as scalars,
shown in Eq. (15).

P12 =
l12(P1 + P2) + (d1 − d2)(P1 − P2)

2× l12

⇒ P12 =

10× (

[
0
0

]
+

[
10
0

]
) + (2− 6)× (

[
0
0

]
−
[
10
0

]
)

2× 10

⇒ PW
M = P12 =

[
7
0

]
(15)

In Fig. 3(c), we illustrate the computation of weighted mini-
max point for three agent locations P1(0, 0), P2(9, 3), P3(4, 9)
with weights d1, d2 and d3 given by 1, 3 and 5 respectively.
Since di < (lij + dj) & di < (lki + dk) ∀ i, j, k ∈ {1, 2, 3}
with i 6= j 6= k, the first condition in Eq. (7) is invalid. Similar
computations show that the second condition in Eq. (7) is also
invalid. Thus, the weighted minimax point PW

M is P123.
Locus of points equidistant from two agent locations with

their associated weights is a branch of the hyperbola as given
by Eq. (8). P123 is the point of intersection of three such

hyperbolas constructed on the three pairs of agent locations
(P1, P2), (P2, P3) and (P3, P1) as shown in Fig. 3(c).

For instance, consider the agent pair P1(0, 0) and P2(9, 3)
with their corresponding weights d1 and d2 given by 1 and
3 respectively. Let P (x, y) be an arbitrary point equidistant
to P1 and P2 with weights d1 and d2 respectively. The
locus of P (branch of a hyperbola) passes through the point
P12(5.45, 1.81) and is given by Eq. (16) as shown in Fig. 3(c).√

(x− 0)2 + (y − 0)2 + 1 =
√
(x− 9)2 + (y − 3)2 + 3

⇒ y =
2
√

43(2x2 − 18x+ 43)− 27x+ 129

5
(16)

Similar computations on the remaining two agent pairs
lead to two additional hyperbolas that pass through points
P23(5.86, 6.77) and P31(2.81, 6.33) as given by Eq. (17).

y =

√
57(4x2 − 52x+ 201) + 30x− 3

32

y =
36
√
4x2 − 16x+ 81− 72x+ 729

130

(17)

The point of intersection of these three branches of hyperbolas
is P123(4.48, 5.75) which is the weighted minimax point PW

M

for given agent locations and weights (Fig. 3(c)). An efficient
method to implement these computations on a microcontroller
is presented in section VII-A.

APPENDIX B
The agents at (P1, P2, · · · , Pk−1) transmit their initial lo-

cations to the agent at Pk. The latter computes the gath-
ering point PG and transmits it back to the agents at
(P1, P2, · · · , Pk−1). Each agent then executes Algorithm
Path Following to gather at PG.

The communication is implemented as follows. The agents
encode their location and index number in the form of a 10-
digit constant. The first four digits indicate the X-coordinate of
the location while the next four indicate the Y-coordinate (in
centimetres). The implementation currently allows 99 agents
and hence the last two digits indicate the agent’s index number
ranging from 01 to 99. Index number 00 is reserved for the
gathering point transmitted by the agent at Pk. For example,
the encoded information transmitted by agent P1 located at
(3142, 30) to Pk is of the form 〈3142003001〉. Similarly, the
encoded form of a gathering point corresponding to (2718, 43)
sent by Pk to other agents is 〈2718004300〉. Since this
approach involves transmission of k values (locations of k−1
agents and one gathering point) each 10 digit in size, the
communication complexity [26], [27] is O(k).
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