
Journal of Terramechanics 117 (2025) 101034 

A
0

Contents lists available at ScienceDirect

Journal of Terramechanics

journal homepage: www.elsevier.com/locate/jterra

Interaction-aware control for robotic vegetation override in off-road
environments
Charles Noren ∗, Bhaskar Vundurthy, Sebastian Scherer, Matthew Travers
The Robotics Institute, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213-3890, PA, United States of America

A R T I C L E I N F O

Keywords:
Trajectory optimization
Vegetation override
Off-road driving
Robotics

A B S T R A C T

Robotic systems tasked with completing off-road economic, military, or humanitarian missions often encounter
environmental objects when traversing unstructured terrains. Certain objects (e.g. safety cones) must be
avoided to ensure operational integrity, but others (e.g. small vegetation) can be interacted with (e.g.
overridden/pushed) safely. Pure object-avoidance assumptions in conventional robotic system navigation
policies may lead to inefficient (slow) or overly-cautious (immobilized) traversal behaviors in off-road terrains.
To address this gap in system performance, we draw inspiration from existing hybrid dynamic system control
literature. We have designed a nonlinear trajectory optimization controller that utilizes vegetation-interaction
models as a jump map in the dynamics constraint. In contrast to purely vision-based navigation policies
which classify the traversability of obstacles, the allowable subset of objects with which the vehicle can safely
interact is now characterized by a data-driven collision model and the existence of a dynamically-feasible
trajectory which satisfies the contact constraints. The controller’s capabilities are demonstrated on a full-sized
autonomous utility task vehicle where objects including posts and trees of up to 25.4 [mm] and 81.8 [mm]
diameter are overridden.
1. Introduction

When [I am] going through vegetation and driving through or over
it, [I] always have it in the back of my head how I am going to hit
it. Typically that is head on with the front bumper as that will be
the strongest point on the vehicle and give me the best leverage to
run over [the vegetation] and go through it.

[Ryan Arciero, Professional Off-road Driver]

The execution of off-road vehicle operations is influenced by the
decision of whether to take an action to ‘‘avoid’’ or ‘‘strike’’ environ-
mental objects (Rybansky, 2017). As seen in the quote above, when
striking vegetation, professional off-road racing drivers carefully in-
ternally model and allow certain collisions for safe travel off-road. It
stands to reason that in order to emulate the high performance of pro-
fessional drivers in off-road conditions, robotic vehicles will also need
to consider the same decisions about collisions. However, there is a
great imbalance of work in the development of the ‘‘avoid’’ and ‘‘strike’’
actions for robotic platforms, with a majority of work centering on the
‘‘avoid’’ action. We believe that this imbalance has led to a capability
gap in robotic off-road operations that require vegetation override.
Specifically, we claim that robot control policies which rely solely
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on avoiding environmental objects exist within a paradigm that both
inadequately represents and models the challenges regarding off-road
terrains and environmental objects.

For tasks such as on-road (Paden et al., 2016) and on-trail robotic
operations, robotic vehicles generally only demonstrate the need for
avoidance capabilities. Requirements reaching back to the Defense
Advanced Research Projects Agency (DARPA) Grand and Urban Chal-
lenge(s) (Thurn et al., 2007; Urmson et al., 2009) reflect the need for
certain areal or object avoidance behaviors. Thus, many methods have
evolved in the field robotics, planning, and control domains to address
such requirements. Expressing object avoidance as a general constraint
in the state space for both state-based planning (Lavalle, 2006) and for
optimal-control-based approaches (Jianyu et al., 2017; Howell et al.,
2019) are well-established (Paden et al., 2016). Furthermore, the use of
penalty-based methods for object avoidance (Williams et al., 2018) and
avoidance-guaranteed ‘‘proof-by-construction’’ techniques have seen re-
newed attention in recent years (Liu and Tomizuka, 2014; Noren et al.,
2021). However, the quote above speaks to the need to traverse objects,
and thus only taking avoidance actions or forbidding contact may not
reflect expert driving behavior.
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Although works developing the ‘‘strike’’ action set are in fewer
numbers, the field robotics, planning, and control communities have
all evolved different means to reason about collisions. The approaches
from the field robotics community, such as classifying objects as ‘‘strike-
able’’ via visual measures of object geometry or through the use of
virtual and physical bumpers (Kelly et al., 2006) draw from the prac-
tical needs of robotic platform operation. High-level planning meth-
ods, such as those described by Rybansky (2017), develop collision
rules dependent on the vehicle configuration and environmental struc-
ture to govern expectations (for example, maximum traversal speed
through an area) on vehicle operations. Outside of treating contacts
as disturbances, control approaches generally fall into two categories:
through-contact models and hybrid-contact models. Through-contact
models attempt to capture the nonsmooth physics of the interaction
and directly evaluate those physics during the determination of the
control (Posa et al., 2013; Howell et al., 2023). Hybrid-contact models
develop rules-based functional mappings to model the changes of state
ssociated with a discrete event (Hargraves and Paris, 1987), such as

a collision. These methods are commonly used in direct collocation
rajectory optimization problems for legged locomotion (Kelly, 2017).

Unfortunately, many of the methods that allow contact for a ‘‘strike’’
action solely deal with geometric representations of the terrain or ob-
ject and do not capture all aspects needed for traversing or ‘‘overriding’’
an object.

Furthermore, an additional complicating factor in utilizing contact
odels for robotics applications lies in their ability to be utilized for

nline reasoning. Such constraints on real-time operations are common
n the planning domain, where no assurances exist on an object-

interaction-free path. These types of problems are known as the ‘‘navi-
gation among moveable obstacles’’ (NAMO) problem (Wilfong, 1991).
In this particular problem, the goal is to enable the planning entity
(e.g. robotic platform) to restructure, interact with, or rearrange the
environment in order to meet the planning entity’s goals (Ellis et al.,
2022). Early approaches to the NAMO problem performed a state-
pace decomposition to find manipulation points, and then performed a
euristic search over the freespace configuration components in order
o avoid the complexity of multi-object planning (Stilman and Kuffner,

2004). Recently, Saxena has shown that connecting the problem to
he multi-agent pathfinding domain allows for a decomposition of

the problem into a configuration-search step and a physics simula-
tion step (Saxena et al., 2021; Saxena and Likhachev, 2023b,a). This
nline simulation of physical interaction has proven computationally

costly and difficult to run in real-time, though attempts at learning
dynamical constraints (Scholz et al., 2016) and massively parallelized
simulation of simple models (Abraham et al., 2020) have shown im-
rovements to plan computation speed. Unfortunately, these methods
ften do not leverage existing terramechanical modeling studies or
ely on compute-expensive processes which may not be available on
 robotic platform.

Due to the prevalence and need to interact with vegetation in
he common area of operations of interest, the off-road mobility and
ross-country movement communities have a long history of modeling
uch nongeometric requirements for vegetation with low computational
equirements. For completeness, we first provide a brief overview of
lassical and contemporary vegetation-interaction modeling techniques
efore we state the claimed contributions of this work.

The U.S. Army Engineer Waterways Experiment Station (Blackmon
nd Randolph, 1968) and the U.S. Army Engineer Research and De-

velopment Center (Mason et al., 2012) have developed models for the
verride of different post and vegetation classes. These studies con-
ribute to larger mobility models, such as the North Atlantic Treaty Or-
anization (NATO) Reference Mobility Model (NRMM) (Bradbury et al.,

2018), which are used to analyze the capabilities of both crewed vehi-
les and robotic platforms (Vong et al., 1999). The NRMM continues to
ee advancements and refinements to develop higher-fidelity represen-

tations of vegetative objects, with recent work focusing upon improving
2 
override-force modeling utilizing a robotic test platform (Moore et al.,
2024). Yet, advancements in the vegetation-interaction modeling do-
main are not solely captured within the NRMM. Rybansky (2020)
performed a significant study that conducted several vegetation over-
rides with different classes of vehicles. However, Rybansky’s mobility

odels remain confined to the domain of vehicle mobility analysis and
were not used in an online capacity for reasoning in robotic platform
perations.

Finally, work in the traversability-prediction domain for off-road
obotic driving has also demonstrated the capability to implicitly rep-

resent vegetative objects to a robotic system. While many off-road
driving datasets include multi-modal sensory data depicting vegetative
bjects (Jiang et al., 2020), other datasets may include vegetation inter-

action data itself (Sivaprakasam et al., 2024) or label the traversability
f vegetative objects by considering the vegetation models from the
RMM or Mason et al. (2012) in the labeling process (Sharma et al.,

2022). Implicit representations of vegetative objects can then be cap-
tured in the learned off-road mobility and traversability policies for
off-road operations (Castro et al., 2023; Frey et al., 2023; Chen et al.,
2024; Frey et al., 2024). In particular, online learning methodologies
can take advantage of observed proprioceptive data (Castro et al.,
2023) or human demonstration (Frey et al., 2023) to adapt the system
ehavior online in response to environmental stimuli, but these works
o not directly model collisions.

In particular, the current state-of-the-art for off-road robotic sys-
tems that perform traversal with collisions utilizes haptic feedback to
update the robotic system’s confidence of its environmental obstacle
interaction model online (Prágr et al., 2023). Undoubtedly, when model
onfidence is low, such a learning-based approach provides a robust
oundation for constructing a model representation online. However,
he approach does not take advantage of pre-existing collision models
hich allow for aggressive maneuvers that exploit awareness of the
odel during online operation.

We propose an interaction-aware control system that models the
ffects of object interactions on a robotic platform’s motion. This sys-

tem not only provides a principled methodology for reasoning about
interactions with vegetative objectives (e.g. ‘‘striking’’) but also more
accurately captures the system’s motion when such interactions occur.
As far as the authors are aware, this is one of the first works that
pairs vegetation collision models with online trajectory optimization
to override vegetation. In particular, this work accomplishes the above
research objective by:

1. Efficiently modeling vegetation interactions through the use
of existing low-computation cost vegetation override models,

2. Generating dynamically-feasible interaction trajectories
through the imposition of collocation constraints on the vehicle’s
motion model, and

3. Operating in real-time to enable the maneuver of a nonholo-
nomic wheeled robotic platform through a cluttered off-road
environment.

This work begins with a description of the proposed control struc-
ture in the second section and controller simulations are shown in the
third. Results from hardware experimentation follow the simulation
results, and the paper concludes with reflections and a discussion of
future work.

2. Method (algorithm) overview

This section begins with a description of direct collocation methods
for trajectory optimization and then discusses vegetation and vehicle
modeling. The proposed trajectory optimization control technique is
then motivated from the description and models.
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2.1. Direct trajectory optimization techniques

Trajectory optimization problems determine an optimal state and
ontrol sequence that minimize an objective function (Kelly, 2017).

Eq. (1) shows an objective function of the trajectory optimization
roblem where the boundary term is not explicitly dependent on time

𝐽
(

𝑡0, 𝑡𝑓 , 𝐱(𝑡),𝐮(𝑡)
)

=

𝐽𝑓
(

𝐱(𝑡0), 𝐱(𝑡𝑓 )
)

+ ∫

𝑡𝑓

𝑡0
𝑤
(

𝐱(𝜏),𝐮(𝜏)
)

𝑑 𝜏 , (1)

and where decision variables 𝑡0, 𝑡𝑓 , 𝐱(𝑡),𝐮(𝑡) are, in order: the initial
time, the final time, and the state and control trajectories. Terms
𝐽𝑓 (⋅) and 𝑤(⋅) are the boundary and integral cost terms. The objective
function is then minimized in a mathematical program

min
0 , 𝑡𝑓 , 𝐱(𝑡), 𝐮(𝑡) 𝐽 (𝑡0, 𝑡𝑓 , 𝐱(𝑡),𝐮(𝑡)), (2a)

subject to �̇�(𝑡) = 𝐟 (𝑡, 𝐱(𝑡),𝐮(𝑡)), (2b)

𝐡(𝑡, 𝐱(𝑡),𝐮(𝑡)) ≤ 0, (2c)

𝐠(𝑡0, 𝑡𝑓 , 𝐱(𝑡0), 𝐱(𝑡𝑓 )) ≤ 0, (2d)

where (2b) are the system dynamics and (2c) and (2d) represent general
path and boundary constraints, respectively.

Direct trajectory optimization techniques approximately solve the
mathematical program for the trajectory optimization proposed in (2)
y discretizing and transcribing the problem into a more general non-
inear program. A standard-form nonlinear program is

min
𝐳

𝑅(𝐳), (3a)

ubject to 𝑐(𝐳) = 𝟎, (3b)

𝑑(𝐳) ≤ 𝟎, (3c)

where all functions are assumed to be at least 2 smooth. Direct col-
ocation methods represent continuous-time trajectories with a spline
f 𝑁 time-parameterized polynomial segments; and thus the methods
iscretize the continuous-time trajectory via the 𝑁 + 1 knot points. To
nsure that the solution to the program posed in (2) is feasible with

respect to the system dynamics as described in (2b), an integral form of
the dynamics is approximated through numerical quadrature. Through
the use of different quadrature rules, classically trapezoidal or Simpson
quadrature, different approximating polynomials are recovered. These
approximate integrals are thus posed as collocation constraints in (3b).
Additional integral (2c) and boundary constraints (2d) are posed as
onstraints in (3b) and (3c). Finally, a discrete-time representation of

the objective function in (1) must be posed for the nonlinear program
through approximations such as quadrature) and via an augmented
tate variable 𝑧 containing all the decision variables at the knot points.

2.2. Vegetation override models

The vegetation override models developed by the off-road mobility
nd cross-country movement communities, including those by Blackmon

and Randolph (1968) and Mason et al. (2012), abstract complex col-
lision interactions into useful low-computational-cost approximations.
These approximations generally characterize the required force, work,
r velocity a vehicle needs to override a subset of vegetation given some
arameterization of the vehicle or environment.

2.2.1. 2012 mason override model
Mason et al. (2012) presents a model for vertically embedded

objects in the ground. These objects consist of posts and small trees.
Equations are introduced in Mason et al. (2012) to capture the nec-
essary override force for post-like objects, which were then validated
rimarily through pull tests. The model in Mason et al. (2012) is

mainly characterized by vehicle mass and geometry (pushbar height),
egetation and emplacement geometry, soil parameters, and a series
 l

3 
of regression coefficients. Mason et al. (2012) then relates a series of
energy expenditure and traversal velocity equations from collected data
and provides a force model. Equation 10 from Mason et al. (2012)
describes the minimum velocity at which the vehicle is required to
travel in order to override a post, 𝑣𝑜𝑣𝑒𝑟, and is given as

𝑣𝑜𝑣𝑒𝑟 =

√

2𝑘𝛼 𝛾𝑑𝐷 𝐿𝑡
𝑚(ℎ + 0.5 ∗ 𝐿𝑡)

, (4)

where 𝐿𝑡 is the burial depth, 𝑚 is the vehicle mass, ℎ is the height
from the ground surface at which the override force is applied, 𝐷 is the
post diameter, 𝛾𝑑 is the dry density of soil, and 𝛼 and 𝑘 are empirical
factors derived as described in Mason et al. (2012). As seen in (4),

eather conditions directly influence the required minimum velocity
or override given that a decrease in the dry density of soil yields a
ower override velocity.

2.2.2. Blackmon override model
The model presented in Blackmon and Randolph (1968) was re-

gressed from a series of vegetation override tests of different vegetation
ypes in different environments. Blackmon and Randolph (1968) pro-

vide unique regressions for force and energy expenditure for these
different vegetation types, including: singular coniferous and hard-

ood trees, arrays of multiple trees struck in unison, and ‘‘clumps’’ of
amboo. From continuous measurements of pushbar force, drivetrain

metrics, distance traveled, time, measurements of the impacted trees,
and characterizations of the aftermath of the collision, Blackmon and
Randolph (1968) construct a model primarily parameterized by the
geometry of individual or multiple trees (for example, the radius of a
tree) or the clump diameter.

In this study, the authors consider only experiments which require
the override of a single tree or post. While Blackmon and Randolph
(1968) provide additional override models, this simplification to a
single class of vegetation was drawn from limitations in the perception
f the necessary characterizing features for arrays of trees. Thus the
ethodologies presented herein are not limited in scope to single

tanding trees, aside from the limits discussed in the original (Blackmon
and Randolph, 1968) manuscript itself. Given this simplification, equa-
tions B10-B12 from (Blackmon and Randolph, 1968) which describe
the force and work required to override a single standing tree are of
particular interest. These equations largely take the form

𝐹ℎ = 𝐾𝑓𝑑
3
𝑠 , (5)

and

𝑊 = 𝐾𝑤𝑑
3
𝑠 , (6)

where 𝐹ℎ horizontal pushbar force, 𝑊 is the work required to fail a
single standing tree, 𝑑𝑠 is the stem diameter, and 𝐾𝑓 , 𝐾𝑤 are constants
hat are dependent on vehicle geometry (e.g. pushbar height).

Note that one advantage of Blackmon’s model over Mason’s model
for use onboard robotic systems is that the model is dependent solely on
a visibly measurable quantity (the stem diameter). This single param-
eter dependency yields a much lower requirement on robotic sensing
capabilities and a priori soil characterization likely at the expense of
model fidelity.

The measure of work produced from Blackmon’s models may then
be combined with additional vehicle information (e.g. the operating
mass) in order to generate a suitable 𝑣𝑜𝑣𝑒𝑟 for a sensed piece of vegeta-
tion. The equivalent relations to determine this 𝑣𝑜𝑣𝑒𝑟 may be calculated
in the manner discussed in Mason et al. (2012). This allows for either
model to be used in the trajectory optimization techniques discussed
ater in the manuscript.
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Fig. 1. The modified Polaris RZR UTV.

2.3. Vehicle modeling

Although the mathematical outline provided above can be applied
to multiple dynamical systems, the platform used in this work is shown
in Fig. 1. The platform is a modified Polaris RZR utility task vehicle
(UTV) that can travel up to 20 [𝑚𝑠 ] in cluttered off-road terrains. The
vehicle is ruggedized to collisions and is equipped with an onboard
sensor suite that contains monocular and stereo cameras, as well as
multiple Light Detection and Ranging (LiDAR) sensors. A nonlinear
bicycle model was used to represent the vehicle dynamics. The vehicle
state was modeled as: 𝐱 = [𝑝𝑥, 𝑝𝑦, 𝜓 , 𝛿 , 𝑣]. In order, the elements of this
state vector are the vehicle: x-position, y-position, heading, steering an-
gle, and velocity. The model of the vehicle controls include acceleration
and steering rate: 𝐮 = [𝑎, �̇�]. The continuous-time vehicle dynamics are

�̇�𝑥 = 𝑣 ∗ cos(𝜓 + at an( 𝐿𝑓
𝐿 ∗ 𝛿

))

,

�̇�𝑦 = 𝑣 ∗ sin(𝜓 + at an( 𝐿𝑓
𝐿 ∗ 𝛿

))

,

�̇� = 𝑣
𝐿

cos
(

at an( 𝐿𝑓
𝐿 ∗ 𝛿

))

∗ t an(𝛿),
�̇� = �̇� ,
�̇� = 𝑎,

(7)

and the parameters may be found in Table 1. The vehicle’s total length
is 𝐿𝑇 , wheelbase length is 𝐿, front axle to center of mass distance is
𝐿𝑓 , front axle to nose distance is 𝐿𝑛𝑜𝑠𝑒, lower bull-bar strut height is
ℎ𝑛𝑜𝑠𝑒, width is 𝑤, and the mass of the vehicle is 𝑚.

2.4. Direct collocation for vegetation override

One central aspect of the collision models presented in the previous
section is that each model captures a loss of kinetic energy due to
the collision corresponding to the failing of the vegetation or post.
However, the structure of the trajectory optimization problem and the
nonlinear program in (2) and (3) require at least 2 smooth functions
to accurately represent the dynamics in the collocation constraints.
Thus, to incorporate the previously mentioned vegetation models in the
trajectory optimization, the impact dynamics must be accounted for.
From the formulation, the collocation constraints are evaluated at spe-
cific collocation points, which need not be the same as the knot points
4 
Table 1
Platform parameters.

Property Unit Magnitude

𝐿𝑇 [m] 3.785
𝐿 [m] 2.972
𝐿𝑓 [m] 1.412
𝐿𝑛𝑜𝑠𝑒 [m] 0.915
ℎ𝑛𝑜𝑠𝑒 [m] 0.533
𝑤 [m] 1.828
𝑚 [kg] 901.0

described earlier. This realization gives rise to the idea of introducing
a pointwise-in-time discontinuity in the form of a functional map,
commonly described as a ‘‘jump’’ map, between the two states which
represents the collision. This concept exists at the center of hybrid-
contact representations of collisions and multi-phase direct collocation
methods, and is discussed in more detail in Hargraves and Paris (1987)
and Kelly (2017). These approaches have not been implemented using
the aforementioned vegetation models.

To capture the effects of the collision at a knot point, a mapping
must be defined to transition the state at the time of collision, 𝐱(𝑡𝑐 𝑜𝑙), to
a new post-collision state. That knot point representing the pre-collision
state, 𝐱𝐜𝐨𝐥 = 𝐱(𝑡𝑐 𝑜𝑙), is mapped to the next knot point via the mapping

𝐱𝐤+𝟏 = 𝐟𝐜𝐨𝐥(𝐱𝐤), (8)

where subscript 𝑘 is a general indexing of the knot points, instead of
via the selected quadrature rule. While the technique is compatible with
the different collision models as described in the vegetation modeling
section, this work represented the collision as a loss of velocity at the
point of collision. More specifically,

𝐱𝐤+𝟏 = 𝐟𝐜𝐨𝐥(𝐱𝐤) = 𝐱𝐤 − [0; 0; 0; 0; 𝑣𝑜𝑣𝑒𝑟], (9)

where 𝑣𝑜𝑣𝑒𝑟 could be defined (for example, via Mason et al. (2012)’s
model) in (4), where the last element of 𝐱𝐤 corresponds to the velocity
in (7). However, enforcing such a mapping at the point of collision does
not solely account for the effects of the collision. For the simple jump
map in (9), collisions could propel the system in reverse at low speeds,
so either a guard function or a lower-bound on the minimal allowable
velocity must be enforced to ensure compliance with physical laws. A
natural requirement to ensure the vegetation is overridden is to enforce
that the velocity reaches at least 𝑣𝑜𝑣𝑒𝑟 at the time of collision. Just as
the velocity constraint is imposed at the point of collision, additional
constraints or allowances may be associated with the knot point 𝐱𝐜𝐨𝐥.

Unfortunately, specifying the time of contact or the contact se-
quence is a non-trivial matter. For the posed collision problem, while
the time of collision is not known, the point in space at which the
contact occurs is known. Fixed time-stepping methods that discretize
the problem posed in (2) with a constant time step are challenging to
use, as specifying which particular knot point (if any) will represent
𝐱𝐜𝐨𝐥 is equivalent to knowing the specified contact sequence at best and
may result in an unsolvable problem at worst. However, by adding the
time step used during the determination of the collocation constraints
into the decision variables and by allowing the solver to determine a
unique time step for each segment, the knot point which specifies the
collision takes new meaning. Instead of representing a specific time of
collision, the knot point 𝐱𝐜𝐨𝐥 can now be enforced as a specific state at
the point of collision through an equality constraint

𝐱𝐜𝐨𝐥 = 𝐱𝐨𝐛𝐣, (10)

where 𝐱𝐨𝐛𝐣 is a positional representation of the object in the state space.
Eq. (10) is then added as a general equality constraint in (3b). Selecting
the specific index of 𝐱𝐜𝐨𝐥 is a method hyperparameter. Associated with
this additional time decision variable includes the need to provide
bounds on sizes of the time steps. Simple inequality bounds may be
posed as ℎ𝑙 𝑜𝑤 ≤ ℎ ≤ ℎℎ𝑖𝑔 ℎ and ℎ𝑙 𝑜𝑤 > 0. This constraint on the time step
lower bound ensures that the solver does not take unphysical actions.
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Fig. 2. Control logic diagram of a vehicle performing a vegetation override in the
presented control framework. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Finally, if no feasible trajectories are found during the solution,
such as if the needed velocity to override given a particular model
was not obtainable before collision, the platform is commanded to
remain stationary or to take an emergency avoidance action. While no
uncertainty in the position of the object was considered in this work,
uncertainty in the measurements of the vegetation was addressed by
taking the maximum 𝑣𝑜𝑣𝑒𝑟 as prescribed by the vegetation model during
the time the vegetation was observed.

2.5. Algorithm overview

For a given vegetation model (such as Mason et al.’s 2012 post-
override model), a set of vehicle dynamics, and the interaction model
capturing the ‘‘jump map’’ in the prior section, an operational logic
can be implemented on a robotic platform to override vegetation-like
objects in the environment. The approach is outlined in Fig. 2. Note
that this approach assumes that any vegetation that is considered for
override may be overridden if the override velocity can be reached from
the initial state and given the dynamics (2b).

This logic is demonstrated in an example case motivated by the
presented experiments. Given the vehicle’s starting location (position
‘‘A’’ in Fig. 2), a target (goal) location (position ‘‘B’’ in Fig. 2) and a
single intervening piece of vegetation (located at 𝑥𝑡 in Fig. 2), the ve-
hicle computes the override velocity (𝑣𝑜𝑣𝑒𝑟) from the selected override
model. Different characteristics of the observed piece of vegetation may
imply different override velocities are required at the point of collision
(𝐱𝐜𝐨𝐥). For the example figure, assume that the vegetation located at
𝑥𝑡 has an override velocity that scales with trunk size. For the given
trunk size, the required override velocity is 𝑣2, outlined in purple. In
order to be successfully traversed, the vehicle must reach a velocity of
at least 𝑣2 at the point of collision. For vegetation with smaller trunk
sizes (for example, vegetation that requires an override velocity 𝑣1
corresponding to the green line), a smaller velocity may be achievable
given the initial velocity of the vehicle. For vegetation that requires a
large override velocity, the required velocity (𝑣3 > 𝑣𝑐 𝑜𝑙, in red) may
not be overridden safely as the required velocity can never be reached.
The vehicle then executes the corresponding action set determined by
the trajectory optimization technique that corresponds to the velocity
profile that achieves a velocity equal to or higher than the override
velocity (𝑣2 in this example instance). In the example, either velocity
trajectory that takes a velocity higher than the override velocity is thus
valid, and a further selection of which velocity is taken depends on
other design choices. For example. an emphasis for an added margin of
safety may prefer the velocity trajectory corresponding to 𝑣𝑐 𝑜𝑙 while
a preferred minimum-kinetic-energy approach may take the velocity
trajectory corresponding to 𝑣2. In this work, we select the trajectory
that minimizes the point-wise 𝓁2-distance evaluated at the knot points
between a reference velocity (nominal travel speed) and the trajectory.
5 
Fig. 3. Simulated vegetation override for 31.75 [mm] post. The controller achieves
an actual velocity (green) above the required threshold. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

3. Simulated vegetation override

Before running on the vehicle hardware, a series of tests were
conducted in simulation. For all simulation tests, the Mason et al.
(2012) model was utilized by modifying only the vehicle and post
parameters (𝐿𝑡, 𝑚, ℎ, 𝐷).

An example override for a 31.75 [mm] post that is embedded
0.3048 [m] into the ground is shown in Fig. 3. The post is placed 20 [m]
in front of the robot in the 𝑥-direction. In the figure, the top plot rep-
resents distance from the goal and the bottom represents the simulated
velocity. Of particular interest in this simulation is the collision that
occurs at the 20 [m] mark, where the velocity drops substantially due
to the collision with the simulated post. In the velocity graph included
in Fig. 3, this drop in velocity is labeled 𝑣𝑜𝑣𝑒𝑟. To decrease the time
needed to solving the trajectory optimization problem, the problem
was initialized by dissecting the trajectory into 𝑚 segments, where 𝑚
is the number of expected collisions plus one. For a scenario with a
singular object that must be overridden, such as in Fig. 3, the entire
trajectory that is generated is coupled together at the collision points.
This is shown by the two colored areas in Fig. 3. The bifurcation of the
trajectory requires that an additional boundary be generated for each
section. For the presented scenario, the initial candidate solution was
then constructed by linearly interpolating between the start position
and 𝐱𝐨𝐛𝐣, and then between 𝐱𝐨𝐛𝐣 and the end position. While additional
optimization could be performed, for the problems considered in this
work, the initialization dropped the number of solver iterations by
around a third. Note the one exception to this statement is in the
initialization of the control trajectory, in which the initialization held
constant values.
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Fig. 4. The first hardware experiment: a straight line trajectory through an embedded 31.75 [mm] post. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
4. Vegetation override hardware results

Three hardware results are presented in this section. The first two
results use post override models from Mason et al. (2012) and the
third result uses the longitudinal override model for a single standing
tree described in Blackmon and Randolph (1968). In the experiments,
the vehicle was commanded to travel at a nominal speed of 5 [m/s]
for the first two experiments and 3 [m/s] in the final experiment. A
model predictive controller, similar to the unconstrained version of the
work provided in Jianyu et al. (2017), was implemented as a tracking
controller. The results provided in Fig. 4, Fig. 5, and Fig. 6 reflect
this tracking controller following the trajectory as determined by the
trajectory optimization controller.

The reported velocity for each run was calculated using a feature-
based Simultaneous Localization and Mapping (SLAM) methodology
known as ‘‘Super Odometry’’ (Zhao et al., 2021). Super Odometry fuses
multiple sensing modalities, including LiDAR, Inertial Measurement
Unit(s) (IMU), and Global Navigation Satellite System (GNSS) to simul-
taneously provide a register pointcloud map of the environment and
an estimate of the system odometry. An XSens MTI-630 AHRS IMU
(‘‘XSens’’, one onboard) and Carnegie Robotics Duro GNSS (‘‘Duro’’, one
onboard) were fused in the SLAM setup to generate a state estimate
with a position accuracy greater than 0.4 [m] and a velocity accuracy
greater than 0.08 [m/s]. While operations in Experiment 1 and Exper-
iment 2 were conducted in environments where GPS could sufficiently
localize the robotic system, in regions with heavier canopy cover such
as in Experiment 3, localization from GPS data alone may be difficult.
However, the large number of unique environmental features (e.g. tree
trunks) captured by the onboard LiDAR provided sufficient environ-
mental characterization to localize the robotic system. Initial concerns
of matched features existing primarily on the overridden object proved
to be unfounded in sufficiently dense forest environments.

4.1. Experiment 1 - straight line test

The first experiment that was conducted on hardware was a straight-
line test. The object that the platform collided with was a 31.75
[mm] pine dowel rod that stood 0.914 [m] above the ground and was
embedded around 0.305 [m] below the ground. The soil surrounding
the dowel rod was compacted by hand. It had not rained for more
6 
than a week, and soil conditions were dry, even at a depth of 0.305
[m]. See Mason et al. (2012) for further discussion on the influence of
weather conditions on required minimum override velocity. The min-
imum required override velocity computed using Mason et al.’s 2012
model was 2.7118 [m/s]. The post was placed around 11.70 [m] from
the front of the robotic platform. The red arrow in Fig. 4 marks the
position of the object as seen by the robotic platform’s perception
system. In Fig. 4, the vehicle began its trajectory at viewpoint zero. GPS
had the vehicle localized at the centroid of the blue circle in Fig. 4 at
the time of collision. The vehicle’s end goal is depicted as a red square.

In order to constrain the platform into overriding the vegetation,
keep-out zones were enforced around the vehicle. These zones are all
areas shown in bright pink in Fig. 4. The gray areas in Fig. 4 indicate
all the surrounding objects that are above a height limit of 0.5 [m]. The
planned vehicle trajectory is shown in green. Platform viewpoints are
provided in Fig. 4, which are captured along the executed trajectory.
A subset of key viewpoints correspond to the numbers located on the
obstacle and collision map subfigure in Fig. 4. Note that the vegetation
in each photo is highlighted with a bounding box for better visibility
of the extremities of the vegetation.

The vehicle reached a speed greater than the necessary threshold in
order to impact the vegetation. The collision with the pine dowel rod
occurred at around 4.5 [m/s]. The registered collision time was earlier
than expected, but this is likely due to the fact that the point of time
of collision is calculated when the vehicle first makes contact with the
vegetation and the vehicle models used in the collision planning did
not include the length of the nose of the vehicle. The vehicle suffered
no damage during the test, but the post was almost completely failed.
After collision, the post remained at an angle, with the end of the
post that was suspended in mid-air sitting around 0.20 [m] over the
ground surface. The post had displaced some soil, as evident in the
post-collision subfigure in Fig. 4. While the soils were compacted by
the experimenters before the tests, this displaced soil may be evident
of a lack of strong compaction at the surface. The post failed roughly
0.271 [m] from its bottom-most point, a little below the ground plane.

4.2. Experiment 2 - post override test

The second experiment used the model from Mason et al. (2012)
to represent the post for override. This post is 25.4 [mm] in diameter,
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Fig. 5. The second hardware experiment: a turning trajectory through an embedded 25.4 [mm] post. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 6. The third hardware experiment: a straight line trajectory through an embedded 81.8 [mm] tree. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
stands 0.914 [m] above the ground, and is embedded around 0.305
[m] below the ground. The parameterization of the soil was assumed
consistent with the results found in Mason et al. (2012). This yielded
an override minimum velocity of 2.4255 [m/s]. The post’s position is
marked with indicator ‘‘B’’ in Fig. 5 Additionally, the electrical pole in
Fig. 5 that may be seen in viewpoint zero is indicated with an ‘‘A’’ in
the collision map for localization. The vehicle began its trajectory at
viewpoint zero. GPS had the vehicle localized at the centroid of the
blue circle in Fig. 5 at the time of collision.

The vehicle reached the target speed and x-coordinate position at
the correct collision time. Again, note the vehicle’s nose is making
contact with the pole at the time of the collision. Another thing to note
is vehicle did strike the post on the passenger-side of the front bull-bar.
This is a near-head-on collision with the post, but the alignment was
meant to be towards the center of the bull-bar not the side.
7 
After the collision, the post was completely failed by the platform.
Additionally, the post had been slightly pulled out of the ground by
around 50 [mm]. Fig. 5 contains an image of the failed post. As in
Experiment 1, the platform was not harmed.

4.3. Experiment 3 - small tree override test

The final experiment used a simplified model from Blackmon and
Randolph (1968) to compute the required override velocity for the
small piece of vegetation (tree). In Blackmon’s model, the expression
for required work needed to fell a single standing tree relies on the
diameter of the stem. This information, combined with vehicle inertial
information, may then be used to calculate an override velocity in the
manner presented in Mason et al. (2012). As the tree does not maintain
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Fig. 7. A final location and orientation of the tree which participated in Experiment
3.

a uniform radius, the average width of the tree at the point of impact
(81.8 [mm]) was used as an approximation. This measurement yielded
a minimum override velocity of 0.758 [m/s]. The tree’s position is
approximately at the centroid of the yellow box in Fig. 6. The vehicle
began its trajectory at viewpoint zero and GPS had the vehicle located
within the blue circle at the time of collision.

The vehicle reached the target speed and x-coordinate position
slightly before the collision time (0.48 [sec]) which was likely due
to the poor velocity tracking exhibited by the longitudinal controller
at times 6–10 [sec]. At around 12 [sec], the vehicle’s nose made
contact with the stem of the tree, yielding an immediate slowdown
that is reflected in the vehicle’s reported velocity. The reported velocity
loss from Super Odometry was 0.732 [m/s], which is lower than the
expected loss of 0.758 [m/s]. Expectantly, integrating the IMU and
GNSS output also directly reflects this slowdown in velocity. After
colliding with the tree, the vehicle continued to roll until it came to
a complete stop.

During the point of collision, the tree was overridden as shown in
the point-of-view camera angles in Fig. 6. However, after the vehicle
traversed over the tree, the root structure of the tree returned it to an
upright position. The final resting position and orientation of the tree
after collision is shown in Fig. 7.

4.4. Discussion

The approach presented in this manuscript utilizes existing low-
computation cost collision models to capture the effects of interactions
with vegetative objects in the environment in order to design a tra-
jectory capable of overriding that vegetation. The approach leverages
the robotic platform’s onboard perception system to estimate the pa-
rameters of the vegetation models (e.g. tree diameter), which is then
used to fit the collision model. While there is inherent uncertainty in
the measurement made by the onboard sensor suite, a conservative
approximation (e.g. taking the largest-observed diameter in a time
window) is utilized in this work to estimate the parameters of the
vegetation model. Such approximations could lead to overly conser-
vative behaviors when overriding vegetation of significant size, but
allow for the system to model vegetation interactions solely through its
onboard sensors. The generated trajectory captures the environmental
8 
interaction by modeling the expected loss of velocity experienced by
the vehicle due to the interaction. This capability allows the vehicle to
decide in real-time whether to override post-like environment objects
and how to maneuver the wheeled robotic platform through a cluttered
off-road environment.

The hardware trials were expected to show losses in kinetic energy
due to the collision, but, surprisingly, no large loss of kinetic energy was
experienced during the collision with posts. While the vehicle engine
was in use during the impacts presented in this work and the bull-
bar has a compliant mount, the loss of energy associated with both
experiments was expected to have resulted in a larger drop in the
kinetic energy than was observed. The only experiment that reflects
an observable drop in kinetic energy results in an equivalent loss of
velocity of 0.732 [m/s] on collision, which is lower than the predicted
value of 0.758 [m/s]. This final experiment reflects that a loss of kinetic
energy could be experienced during the interaction with the post and
that a dynamically-feasible interaction trajectory should account for
this loss to more accurately represent the real-world effects of the
vegetation override interaction chosen by the robotic system.

5. Conclusions

The off-road operation of robotic systems continues to be a challeng-
ing area. It is not only clear from robotic-operated off-road vehicles,
but also from human-operated off-road vehicles, that the unstructured
nature of the terrain and any associated uncertainty yields a problem
that is drastically different from on-road or trail driving. The presented
work advances the state-of-the-art in off-road navigation by address-
ing vegetation interactions through the use of online hybrid dynamic
optimization-based vehicle controllers with classical vegetation over-
ride models. This understudied vital area of off-road driving has a wide
range of applications, and many areas of improvement to bring robotic
platform operations more inline with expert human operators.

This work presents a trajectory optimization method that combines
hybrid-dynamics, a free-time formulation, and existing parameterized
vegetation models from the off-road mobility and cross-country move-
ment literature in order to override environmental vegetation. The
method works by enforcing minimum velocity constraints such that
the collisions with the vegetation occur at a minimum override speed.
These collisions occur at a designer-specified index of collision, but the
designer need not select the time of collision, as that is handled directly
by the solver.

While the collisions modeled in this work occur at a unique in-
stance in time, future extensions should also look into addressing
extended collisions with distributed objects, such as dense foliage. Gen-
eral improvements to the algorithm include changing the vehicle model
to capture the frontal geometry, better representations of vegetative
objects (the representation of a bush-like object as a singular point
such as the center of a tree showed difficulty in determining collision
time). Furthermore, exploring the implications of the designer-selected
collision index hyperparameter and developing automated approaches
to how best to select that index should be made a priority. Work in
adaptive gridding or meshing could assist in selecting the collision
index.

In particular, we postulate that extending the study presented in
this manuscript to directly account for environmental uncertainty could
provide a means for safer off-road behaviors. Of larger concern is that
the provided vegetation models are themselves approximations of the
vehicle-vegetation interaction, with factors that can be non-observable
(e.g. root depth) or difficult to monitor (e.g. soil moisture) in real
time. The author’s believe that incorporating information-seeking be-
haviors to investigate model quality or including a measure of vehicle-
vegetation interaction model confidence with respect to previously
overridden vegetation should be a priority for the wider community.

Finally, we implore the off-road mobility community to continue
to construct and improve on low-computational cost vegetation inter-
action models and datasets for use by robotic systems. The algorithm
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presented in this paper takes advantage of low-computational cost
representations of vegetation-interactions to perform overrides, but its
xtensibility to other types of vegetative and commonly encountered
on-vegetative objects is dependent on these models. As an alternative
o developing explicit vegetation-interaction models utilized in this
aper, the implicit models developed in learning-based approaches con-
inue to show powerful advances in off-road vehicle control. However,
any of these approaches are limited by availability of high-fidelity

off-road interaction data or representative simulated data.
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