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ABSTRACT Autonomous mobile robots, equipped with multiple sensors, have been traditionally used to
perform search, rescue and other tasks. A number of new scenarios for application of mobile robots have
emerged in the last decade. These include automated logistics handling in warehouse-like environments (in
the context of e-commerce) and robot-assisted personal care. In these scenarios, there is a need for highly
accurate object recognition and semantic knowledge. Also, enhanced safety requirements have come up as
robots attempt to interact more with humans and make efforts to recognize their gestures and movements.
Mobile robots also increasingly operate in malls and other zones which are pedestrian-rich. Thus, a need has
arisen for a relook at navigation strategies for mobile robots. Classical approaches are typically inadequate
in these new settings. This survey is aimed at studying the role of contemporary approaches in artificial
intelligence in enabling successful robotic navigation in a variety of complex environments. In particular,
we discuss how generative models, attention mechanisms and adaptive methods have helped mobile robots
navigate in cluttered, uneven and even unknown indoor and outdoor environments. We also point to several
interesting possibilities in the future.

INDEX TERMS Mobile robot navigation, complex environments, generative adversarial networks,
variational autoencoders, attention mechanisms, transformers, diffusion models, normalizing flow models,
deep reinforcement learning, imitation learning, graph neural networks and knowledge graphs, current
trends.

I. INTRODUCTION
Autonomous mobile robots operate in a variety of envi-
ronments [1]. These include the factory floor where they
are used for transporting materials and products. They have
also been traditionally used for search and rescue tasks.
Figure 1 presents a scenario for navigation of mobile robots.
In particular, it depicts a factory environment where the robot
navigates amidst a wide range of static objects and humans
moving between different work stations. The task of the
robot here is to assist humans in transporting items from one
location to another in the factory floor.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

Classical robotic navigation involves point to point transfer
amidst obstacles. Collision avoidance is a key issue. Several
geometric algorithms have been designed in the context of
navigation [2]. They include model-based and sensor-based
solutions. Various approaches have been adopted including
visual odometry, feature matching, and stereo vision.

During the last decade, a number of new scenarios for
application of mobile robots have emerged. These include
warehouse environments [3] in the context of e-commerce,
retail stores for surveying [4] and domestic environments [5]
to assist the elderly. Robots often face enormous challenges in
especially highly constrained spaces [6]. In these scenarios,
there is also a need for highly accurate object recognition
and semantic knowledge. Also, enhanced safety requirements
have come up as robots attempt to interact more with
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FIGURE 1. Robot navigation in a factory setting.

humans. Socially-aware navigation has become increasingly
important. For example, robots are currently used in homes
and other places such as exhibition halls to guide humans [7].
Robots are required to make efforts to recognize the
gestures and movements of humans in these environments.
Mobile robots also increasingly operate in malls and other
zones which are pedestrian-rich. Thus, a need has arisen
for a re-look at navigation strategies for mobile robots.
Conventional navigation strategies are typically inadequate
in these new settings and are now being largely replaced by
methods that involve learning of the environment in which a
robot navigates.

Different learning methods have been explored by
researchers. Some involve teaching the robot to handle
obstacles. Other scenarios that a robot may encounter in
practice can also be provided as inputs to train a robot.
Broadly, these fall into a data driven approach for navigation.
During the period from (approximately) 2012 to 2019,
considerable effort was on using Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
[8] for various robotic tasks. CNNs have been used for
performing classification and detection tasks. RNNs have
been particularly valuable for tasks such as change detection
(such as recognizing the movement of furniture in a domestic
setting) and shortest path calculation. However, CNNs as well
as RNNs typically work well when a large amount of training
data is available and it may be difficult to provide this for
robotic navigation tasks.

Recently, generative models [9], [10], [11] have been
proposed for various tasks in computer vision. These models
are capable of generating new data from (limited amount
of) input data. Further, while the performance of CNN is
comparable to humans in object detection tasks (even with

scaling), the intensity of the corresponding features in the
feed-forward CNN layers is weak when we have partially
or heavily occluded objects (compared to the completely
visible objects) [12]. Recently, the notion of attention
mechanisms [13] has been proposed for natural language
processing tasks and variants of it have been developed for
computer vision [14]. These handle non-ideal scenarios in
object detection well and are valuable in the context of
robot navigation seeking, for example crockery, in a domestic
setting. It is worth noting that crockery/cutlery that is sought
by the robot may be partially occluded hence methods that
handle this occlusion well are valuable. A third category
of methods, based on robots learning optimal behaviour
by trial and error and adjusting actions dynamically, has
also been highly effective in navigation. Examples include
reinforcement learning and knowledge graph-based methods.
These are broadly referred to as adaptive approaches.

We focus on study of works that use generative models,
attention mechanisms and adaptive methods for robot navi-
gation in complex environments in this paper. The complex
environments we consider in this survey include the fol-
lowing: (i) cluttered environments (ii) unseen environments
(iii) environments with rough terrain and (iv) environments
with one or more dynamic obstacles. To our knowledge,
prior reviews on robot navigation for such environments have
not explicitly discussed the role of attention mechanisms,
generative models and the various adaptive methods (besides
reinforcement learning). The present survey is motivated by
the following questions.

• What approaches have been used for handling complex
environments prior to the advent of contemporary
learning methods ?

• What are the capabilities achieved using attention
mechanisms ?

• How well do various generative models perform ?
• Can adaptive methods be used in addition (to transform-
ers or generative models) to enhance the performance ?

• What is the role of attention mechanisms and generative
models to enhance the performance of an adaptive
strategy ?

The remainder of this survey is organized as follows.
In the next section, we present the basic terminology
including tree diagrams showing different types of generative
models, attentionmechanisms and adaptive methods.We also
indicate the methodology adopted for the survey. Section III
describes classical works in the decade preceding the
active introduction of deep learning methods. The role of
early deep learning methods such as convolutional neural
networks and recurrent neural networks in robot navigation
is discussed in section IV. Section V discusses works in
the domain of generative models. Attention mechanisms
for robot navigation are discussed in section VI. This is
followed by adaptive methods in section VII. A summary of
key findings and potential areas for further exploration are
presented in section VIII. Section IX concludes the survey.
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II. TERMINOLOGY AND METHODOLOGY FOR THE
SURVEY
The survey focusses on three contemporary AI-based
approaches for robot navigation. In this section, a brief
description of these three approaches, namely generative
models, attention mechanisms and adaptive methods, is pre-
sented. Tree diagrams showing the various types of generative
models, attention mechanisms and adaptive methods are also
presented.

A. TERMINOLOGY
1) OVERVIEW OF GENERATIVE MODELS
Generative models are approaches that model the distribution
of inputs as well as outputs [10]. It is possible to generate
synthetic data points in the input space. In other words, they
can generate new output samples that are different from those
used during training of the model.

Generative models have been very effective at generation
of images and text [9] for applications such image inpainting
and text completion. Completion of text, for instance,
is realized by the model with the knowledge of just the
statistics of the language. In the context of robot navigation,
generative models have been developed for various purposes.
These include crowd motion prediction for safe robot
navigation [15], footstep planning for humanoid robots [16]
as well as generation and evaluation of multiple paths [17]
for a mobile robot (and choosing ones that meet some
constraints).

A tree diagram showing the various types of generative
models used for robot navigation is presented in Figure 2.

2) OVERVIEW OF ATTENTION MECHANISMS
The origins of attention mechanisms can be traced to
the work by Bahdanau et al. [18]. The authors in [18]
proposed it as an extension to recurrent neural networks
for machine translation. An attention mechanism can be
thought of as an approach to access encoded inputs without
having to compress the entire input into a single fixed-length
representation [11]. Attention mechanisms allow a network
to give different weights to different inputs [10]. Further, the
weighting coefficients can themselves depend on the input
values.

Attention mechanisms have been effectively applied to
natural language processing applications [13]. The authors
in [13] eliminate recurrence structures and show excellent
performance. In the context of robot navigation, attention
mechanisms have been used in various ways. For example,
in off-road navigation and intelligent transportation, attention
mechanisms have been valuable to segment the free-space
and predicting the traversible paths effectively [19], [20].
They have also been useful for inferring target location in
object-goal navigation.

Several types of attentionmechanisms have been proposed.
These include transformers, graph attention networks, group-
wise attention mechanisms and attention score maps, A tree

depicting the attention mechanisms used in robot navigation
is shown in Figure 3.

3) OVERVIEW OF ADAPTIVE METHODS
Adaptive methods in machine learning comprise of those
where the model parameters are not fixed. Instead, they get
updated with time. A model’s state at a given time is used to
update the parameters. Adaptive methods have been studied
from approximately mid-1970s.

A widely used adaptive method is reinforcement learning
(RL) [21]. Its mathematical foundation is provided by
Markov decision processes (MDPs). Merging basic rein-
forcement learning with deep learning algorithms has led
to deep reinforcement learning [22], [23]. Recent surveys
on the subject include [24], [25], and [26]. A few other
adaptive methods have also been studied in the context of
robot navigation. These include graph neural networks and
knowledge graphs [9].

A tree diagram showing the various types of adaptive
methods used in robot navigation in complex environments
is presented in Figure 4.

B. REVIEW METHODOLOGY
This review examines the current state of mobile robot
navigation with focus on complex environments of different
kinds, viz. environments with dynamic obstacles, uneven
terrain, occluded objects etc. The terrains include indoor
as well as outdoor scenarios. Outdoor environments are
not restricted to roads. Both wheeled as well as legged
robots are considered. We also discuss works that employ a
robotic manipulator on a mobile base. The articles collected
were based primarily on search using Google Scholar, IEEE
Xplore, and Semantic Scholar. The focus was on journals
and top conferences. Keywords used for the search included
‘‘robot navigation’’, ‘‘complex environments’’, ‘‘artificial
intelligence techniques’’. To narrow down the search, some
additional keywords such as ‘‘generative models’’, ‘‘attention
mechanisms’’ and ‘‘adaptive methods’’ were provided. Filter-
ing of the results was done to focus on the work in the last
five years. For classical methods (discussed in section III),
the search period was primarily from 2000 to 2012.

III. CLASSICAL METHODS FOR ROBOT NAVIGATION IN
COMPLEX ENVIRONMENTS
In this section, we discuss classical methods for robot
navigation in unknown environments, dynamic environments
and ones with certain constraints (such as dead ends).
We restrict our attention to primarily the decade preceding
2012 when the Alexnet model was introduced [27]. Table 1
lists the various works. We will discuss these works briefly
next.

A combination of model-based and reactive methods for
autonomous navigation in office-like environments (with
desks, tables etc.) is presented in [28]. A topological map
based on sensory gradient is constructed and is combined
with a reactive method that employs potential fields. The
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FIGURE 2. Various generative models.

FIGURE 3. Various attention mechanisms.

FIGURE 4. Various adaptive methods.

authors describe experiments in a static environment. A fuzzy
logic-based approach to robot navigation applicable to a
rough outdoor terrain is described in [29]. On-board terrain

sensing and traversability analysis are reported in [29] and
the authors indicate that incorporation of a global map-based
path planner would be valuable to enhance their approach.
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A method for navigation in an unknown indoor envi-
ronment or a partially known environment is presented
in [30]. The approach is based on fuzzy inference and two
types of obstacle avoidance behaviours, one for the convex
case and the other for the non-convex case, are reported.
Experiments in a polygonal environment are reported.
Navigation and mapping in a large unstructured environment
are studied in [31]. A hybrid metric map combining feature
maps and other metric representations is proposed in [31].
A consistency investigation of Simultaneous Localization
And Mapping (SLAM) is also presented. Robustness to
localization and operation in crowded environments are
potential areas for further investigations.

Traditional navigation algorithms focus on transferring
a robot to a predefined destination avoiding obstacles.
However, in domains such as personal care, there is a need
to consider human interaction during navigation. With this in
view, the authors in [32] report the development of dynamical
systems-based approach for indoor navigation. The approach
relies on a topological map and attempts to have the robot
maintain a formationwith humans. Enhancing the complexity
of formations and robot engagement in conversations would
be interesting further steps. Another map-based approach
for navigation is described in [33]. The authors develop
a traversability region model keeping in view laboratory-
type environments. Extensions to outdoor scenarios would be
valuable.

An early effort on studying the development of learning
algorithms for navigation is presented in [34]. Global strategy
entropy is used as a measure for evaluating progress of learn-
ing. Simulation studies are reported. Another learning-based
strategy for navigation especially in an unknown environment
is reported in [35]. The authors propose a neurofuzzy-based
approach coordinating sensor information and robot motion.

An intelligent navigation method for service robots is
presented in [36]. The focus is on indoor smart environments
with similarity in patterns. Environments with multiple
obstacles and increased sophistication would be interesting
to explore. Navigation in highly cluttered environments
is studied in [37]. Performance-based fuzzy behaviors are
defined and investigated and the work is a step towards
navigation in unknown dense environments. Another fuzzy
logic-based strategy is reported in [38] for an indoor
environment with dead ends. A memory grid is defined
and a minimum-risk method is proposed. Extension to an
outdoor setting would be interesting. An optimal control-
based strategy for navigation of a mobile robot is described
in [39]. The authors present simulation results and point to
the possibility of real-time implementation.

A visually complex environment with limited field of
view is studied in [40] in the context of robot navi-
gation. Bidirectional information exchange between robot
and human is investigated. Simultaneous localization and
mapping handling 3D navigation of humanoids (to handle
uneven surfaces like steps for instance) would increase

the range of applications. The authors in [41] present
a fuzzy behaviour-based architecture for navigation in
an unknown indoor environment. Optimizing the fuzzy
behaviours and enhancing behaviour integration would be
valuable extensions. Another fuzzy logic-based approach for
an environment with complex traps in described in [42].
The authors compare Bayesian inference with their fuzzy
logic approach and show the advantages with respect to
speed and handling imprecision using the latter. Extension
to outdoor environments would be valuable. An approach
based on generating 2D occupancy grid maps from 3D
point clouds is presented for outdoor environments with
varying illumination in [43]. The challenges here rest on
getting accurate information which is difficult when there
are dynamic obstacles. Further, memory requirements are
fairly high. A human-centered sensitive navigation method is
proposed in [44] wherein a robot is intended to harmoniously
coexist with humans. Increasing the accuracy of human
tracking would be a valuable enhancement to the approach
in [44]. A reinforcement learning-based strategy is presented
in [45] for robot navigation in a dynamic environment. The
authors in [45] focus on reducing the size of the Q-table
to get a low-complexity realization. Incorporating pedestrian
behaviours and handling crowded environments would be
valuable extensions to the work in [45].

A fuzzy logic-based strategy for navigation avoiding
local traps is reported in [46]. The authors focus on a
static environment. A Voronoi diagram-based approach for
navigation in a 3D unknown indoor environment is presented
in [47]. Extensions to outdoor environments would be of
interest. A spiral maze-like environment is considered for
robot navigation in [48] and a neural network-based strategy
is described. Accuracy enhancement of the approach in [48]
would be a valuable further step.

To summarize, we note that several classical works that
have handled complex environments are based on fuzzy logic.
Some works use a simple neural network (with small number
of hidden layers) to tune parameters of membership functions
that are part of the fuzzy logic strategy. Highly crowded
outdoor environments have not been investigated in detail.
Further, there is a need to devise methods for navigation
that explicitly consider safety aspects while humans are also
part of the environment. In addition, applications that call for
recognizing an object automatically with high accuracy (in
the context of social robotics or logistics handling) have not
been considered.

IV. EARLY DEEP LEARNING-BASED APPROACHES FOR
ROBOT NAVIGATION
In the period from approximately 2012 to 2019, research
on deep learning for robot navigation was predominantly
using Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs). We briefly summarize the efforts
here. For additional information on early works on deep
learning and reinforcement learning for robotics in general,
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TABLE 1. Overview of classical robot navigation approaches in complex environments.
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TABLE 2. Navigation Task versus Type of Neural Network; CNN denotes
convolutional neural network while RNN denotes recurrent neural
network.

we refer the reader to the extensive surveys in [49], [50],
and [51].
CNNs have been extensively used for image-based

robot navigation approaches. These include vision-based
navigation [52], [53], relocalization [54] and terrain clas-
sification [55] with wheeled robots. They have also been
used in agricultural robotics for weed management [56], [57].
Applications for legged robots with CNNs include facade
cleaning [58], heuristic map-learning [59] and path planning
of Centaur-like robot [60]. Path control of a quadruped via
accurate classification of furniture in the environment has
also been accomplished using CNNs in [61].
The authors in [5] consider the task of automated change

detection in a domestic environment and point to the use
of a recurrent neural network for effective navigation when
the environment involves furniture or other gadgets with
changes in position. A gated recurrent unit-recurrent neural
network is proposed for dynamic path planning of a mobile
robot in [62]. The authors in [63] present the use of a
recurrent neural network for shortest path planning. Another
scenario where a time-based approach such as RNN is useful
(and outperforms other approaches such as support vector
machines with respect to accuracy) is for vibration-based
ground classification [64] that is valuable for mobile robot
navigation.

Figure 5 illustrates an application of robot navigation
arising in weed detection. Conventional approaches to handle
this problem require not only color image data but also
additional cues such as near infra-red information [56].
With deep networks high accuracy is obtained merely with
RGB data. Relevant works based on CNNs in this direction
include [56], [69]. Contemporary approaches for this task are
via transformers [70], and offer enhanced performance due to
a notion called self-attention.

As observed from Table 2, CNN and RNN have been
used for navigation of wheeled and legged robots in various
settings. As indicated earlier, CNN and RNN-based methods
require fairly large amount of training data which may often
be difficult to provide for robot navigation. Further, CNN
does not extract features when there are occlusions [12] and
this can present challenges in social robotics settings when
a mobile robot is tasked with detecting crockery/cutlery to
help adults in a domestic setting. Generative models are
capable of creating new data from existing ones and this is
valuable in path finding applications. In particular, generative
approaches such as diffusion models enable generation of
multiple paths for a robot from a given starting point
allowing the robot to evaluate each and choose the best for
navigation (additional details are provided in section V-E).
Further attention mechanisms such as transformers have the
advantage that transfer learning is highly effective [10] and
this allows use (in robotics) of datasets created for other
domains.

Pure CNN and RNN-based approaches have now been
largely superseded by generative models, attention mecha-
nisms and adaptive methods for robot navigation. However,
it is worth noting that CNN and variants of RNN (such
as Long Short Term Memory (LSTM) network) are still
used as a component of some generative models for
navigation. Further, they augment attention mechanisms to
obtain enhanced performance in certain scenarios. In the
sections to follow, we examine how the current landscape is
in the context of learning for robot navigation.

V. GENERATIVE MODELS
One of the powerful tools of machine learning frameworks
is generative models, which generate new and realistic data
from the existing data. They excel in understanding complex
patterns or complex data. In the context of navigation, the
generative models can generate trajectories for path planning,
predict the next states (for instance, human movement during
robot navigation), complete a discontinuous navigation path,
model occluded objects and so on.

The study of generative models is divided into five
subsections.We start with Variational Auto Encoders (VAEs),
which are simple and easily integrated into latent spaces.
They use a probabilistic framework but produce blurry
images. Then we explore Generative Adversarial Networks
(GANs), which generate high-quality, realistic data with the
help of adversarial training. GANs do not have any likeli-
hood function, sometimes leading to unstable training. To

132338 VOLUME 13, 2025



H. Sridharan et al.: Generative Models, Attention Mechanisms, and Adaptive Methods for Robot Navigation

FIGURE 5. Classification of crop and weed in agricultural robotics via deep learning;green indicates crop while red indicates
weed.

overcome the disadvantages of VAEs and GANs, a normal-
ization flow-based model is introduced where high-quality
data or images are generated, exact likelihoods are computed,
and stable training is done. In recent years, there has also
been a new type of model named score-based models, and
a special case of this is diffusion models, which have become
quite popular as they show good performance while handling
high-dimensional data. In the following subsections, we will
explain these generative models and their application to
robotics, particularly for navigation tasks.

A. VARIATIONAL AUTO ENCODER (VAE)
One of the early, more straightforward and foundational
generative models is VAE, as they introduce latent variable
modelling using a probabilistic framework, which is gener-
ally regarded as a good starting point for learning generative
models. It was introduced by Kingma and Welling in 2013
[77]. By encoding high-dimensional data into probabilistic
latent space, which uses mean and variance, the VAEs
convert the input data into efficient low-dimensional data by
enabling reconstruction and uncertainty estimation and using
decision-making skills. VAEs depend on Stochastic Gradient
Variational Bayes (SGVB) estimation, which allows them
to learn a latent space representation across varied datasets
efficiently. VAEs have various applications for robotic
tasks such as localization, motion planning, navigation and
scene understanding. VAE learns a probability distribution
(mean and variance) and samples a latent vector from
this distribution. Further, VAE optimizes a combination of
reconstruction loss and Kullback-Leibler (KL) divergence to
ensure the latent space follows a smooth distribution.

Figure 6 shows how a variational autoencoder can be
used for robot navigation in complex environments. The
robot utilizes the captured images and laser scans for
map construction, self localization and path planning in its
environment. The application of VAE makes the system
adaptive to varying environmental conditions.

Self-localization is one of the key tasks in robotic
navigation, and VAEs have been utilized in several works
for this purpose. One such work is reported in [71] where
VAE is used for designing a self-localization model, i.e.
finding the position of an electric wheelchair robot. The
robot is equipped with a depth camera, and the features
extracted from these camera images are given to VAE. The
robot is tested on pre-defined trajectories, and the Euclidian
distance error obtained is in the range [0.03, 0.33 m] in
simple environments, but it is quite high (1.52 m) when the
environment is cluttered. One more variant of VAE, named
laserVAE, is developed in [72]. The robot is able to perform
global self-localization tasks both in indoor and outdoor
environments. The robot is equipped with LiDAR, and its
data is sent to VAE. It reconstructs the laser scan data, but
the normal VAE produces smoothly interpolated data, which
leads to loss of step-edges, which are critical in determining
obstacles or surfaces. To overcome this problem, a step-
edge classifier is applied at the decoder output so that the
sharp transitions can be restored, thereby increasing model
robustness even in dynamic environments with noise. This
laserVAE has achieved a success rate in self-localization
of 92.5% and 95.2% in indoor and outdoor environments
respectively.

A new framework, named Dynamic AMorphous Obstacle
Navigation (DAMON), is proposed in [73] for efficient
robot motion planning. The high-dimension (11-D) sensory
data, which includes obstacle position (3-D), robot joint
angles (7-D) and status of collision(1-D), are given to
the encoder, which consists of three fully connected (FC)
layers. It converts to 2-D sampled latent state representation,
which separates colliding states from non-colliding states.
Then, using a decoder with three FC layers but in the
reverse order, the encoder converts this vector into a 11D
state vector. The K-Nearest Neighbors (KNN) algorithm is
used to create a collision-free path in static environments,
and in case of dynamic obstacles Gilbert-Johnson-Keerthi
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TABLE 3. VAE.

(GJK) algorithm and Gaussian Mixture Model (GMM) are
used to predict its path, and adjust accordingly. DAMON
achieves 98.6% and 97.8% success rates in the case of
static and dynamic environments, which is 20% higher than
the Rapidly-exploring Random Tree (RRT) method, and
trajectory smoothness improves by 24% and latency improves
by 85% compared to RRT.

The VAE is used in [74] for robot navigation in an
indoor environment. A video of the entire indoor environment
(here home) is taken and 1000 images are extracted from
the video to train the VAE. The encoder, which has a
Convolutional Neural Network (CNN), converts the images
into 4-D vectors where each dimension corresponds to
different transformations of the scene, thereby representing
the camera movement, i.e. move forward or backwards, move
left or right, tilt up and down and tilt left/right. The shortest
path is computed in the latent space as initial and destination
points are given to the encoder. The decoder creates the
images from the path that the robot should follow to reach
the destination. As the VAE is not so good at capturing local
features, blurry images are obtained from the decoder, and
the generated path is not continuous, leading to abrupt jumps
between two points. This shortcoming can be overcome by
using GANs along with VAE.

The VAE is used in [75] for personalized robot navigation
tasks with the help of depth sensors. The unique characteristic
of this robot is it follows the path preferred by the user
rather than just optimal paths in both static and dynamic
environments. The human operator controls the robot using
a VR headset and a joystick, and the robot collects the
data from the RGB-D camera, which is given to VAE to
convert to low dimensional latent space. The authors propose
a total of five variants of VAE. The first three of them
are VAE-Human Aware (HA), VAE-Human Unaware (HU)
and VAE-No Demonstration (ND). VAE-HA and VAE-HU
are trained with human demonstrations, but only VAE-HA

optimizes for human preference but later doesn’t optimize,
and VAE-ND is not at all trained with human demonstrations.
The fourth variant is VAE-FOV-120, where the depth camera
field of view(FOV) is 120◦ (rather than 90◦), while the
fifth variant named VAE-No Goal Distance (NG) is one
where goal distance is not taken as input. All the five
models are tested with Long Short Term Memory (LSTM)-
Human Predictor (HP), which uses LSTM to model human
movements and VAE for robot path planning. Overall, VAE-
HA achieves a higher success rate, while LSTM-HP achieves
a lesser collision rate.

The models with VAE have achieved good performance
when the robot’s navigation is on plain surfaces, as terrain
variations are minimal when different terrains are used.
VAEs capture brightness levels instead of rich features like
textual or structural variations. So Wasserstein distance-
based AutoEncoder (WAE) and Spherical constraint-based
AutoEncoder (SAE) are used in [76] where the robot is tested
on highly varied terrains in the Spanish Tabernas desert. VAE
learns from a probabilistic distribution, but the latent space
in WAE tries to minimize the Wasserstein distance between
the learned latent distribution and a fixed prior distribution.
Meanwhile, in SAE, the latent space is constrained to the
unit sphere’s surface, which makes embeddings lie on a
hyperspherical manifold rather than being distributed freely
in Euclidean space. WAE is the best model out of the three
models as it has 14.7% higher differential entropy (which
measures uncertainty/variations in the distribution), and SAE
has 13% higher differential entropy when compared to VAE.
Table 3 summarizes the work in robotic navigation using
VAEs. We now discuss the role of generative adversarial
networks.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)
GANs were introduced in 2014 [84]. A new way of training
called adversarial training become popular and it is used in
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FIGURE 6. Variational autoencoder for robot navigation.

GAN. This approach helps to generate high-quality (new)
data. It is a two-network model where the generator and
discriminator compete with each other in a mini-max game.
The generator tries to create new and realistic data while
the discriminator classifies these data into either real or fake
data. Any neural network model performance depends on the
dataset and its training, but in a few applications such as
medicine, autonomous driving, robot navigation and anomaly
detection, the dataset availability is minimal. So GANs are
used to increase the dataset, ensuring it is as realistic as
possible.

With respect to navigation, GANs help create realistic
maps, generating multiple possible path-planning trajectories
that are feasible and efficient while considering the con-
straints, obstacles, and safety perspective. Research works on
GAN include robot path planning and navigation in complex
indoor environments [16], [78], dynamic environments [15],
[79], [80] and perception and mapping-based navigation
[82], [83].
The U-net-based generator of GAN in [78] generates

multiple possible paths, and the discriminator acts as a binary
classifier that chooses the best path generated. The model
takes images as input and utilises local and global path
planning to enable real-time feedback. It is tested in Gazebo
simulation environment. The inference time is reduced by
73% and 83% in curved shorter (50m) and longer paths
(450m), respectively, when compared to the A∗ algorithm,
and the path replanning time is also reduced significantly.

The authors in [16] use GAN for foot-step planning-
based navigation for humanoid robots in complex indoor
environments. The robot-captured images are given to a

CNN-based GAN, similar to U-Net, with skip connections
but with minor modifications. The generator outputs the path
image, which is converted to a grid-based representation.
If any dynamic object enters the path, the GAN is re-run to
generate a new path image. The model is trained with 10K
images for 50K epochs and achieves an accuracy of 93.6%.
When tested on the Gazebo simulator, it took shorter planning
time and resulted in shorter path length when compared to
Dijkstra’s and A∗ algorithms.

Static Obstacles Probability Description (SOPD)-GAN
is proposed in [79] for robot path-planning in dynamic
environments. The robot is equipped with a LiDAR and point
cloud data is obtained from it. With the help of Normal
Distributions Transform (NDT) and Euclidean clustering
algorithms, the objects in the environment are classified into
static objects (such as pillars and poles) and dynamic objects
(like people or pedestrians walking around). The SOPD
module, which consists of an LSTM network, considering
the static obstacles, gives a probability distribution of various
paths for pedestrians, and the generator network of GAN
produces realistic and collision-free trajectories. The robot
is controlled using these trajectories with the help of the
Improved Dynamic Window Approach (IDWA) algorithm.

A GAN network termed Social GAN which predicts
human motion, is used along with real-time human motion
prediction and trajectory planning for a robot in [80].
An RGB-D camera captures human movements, and based
on past movements, the Social GAN predicts future human
movements. The generator consists of an LSTM-based
encoder-decoder network, and it is connected through a
pooling module, that processes the interactions between
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TABLE 4. GAN.

multiple persons, thereby avoiding unrealistic predictions.
The robot pose is estimated with the help of data from LiDAR
and IMUs. By using the Motion Prediction-Timed Elastic
Band (MP-TEB) algorithm, the human trajectory predictions
by Social GAN are integrated into TEB optimization, thereby
producing efficient, smoother and collision-free robot trajec-
tories. This is tested on a Gazebo simulator, and the proposed
framework achieved reduced time for reaching the target,
reduced path length and maintained higher safety distance
from humans when compared to the TEB framework. Social-
GAN is also tested on ballbot robot in [15] for human
motion prediction. The social-GAN model has a 33% lesser
Average Displacement Error when compared to the constant
velocity model, leading to better prediction. But when this
social-GAN is practically deployed for robot navigation
control with a Model Predictive Controller (MPC), the
navigation is practically not improved despite better human
motion prediction. This is perhaps due to safety-efficiency
issues or the prediction leading to lower optimization or
insufficient practical data in the training dataset.

Most motion planning schemes involving robot localiza-
tion (i.e., position estimation) assume they are foolproof
or resilient to attacks. However, the robots are practically
vulnerable if localization attacks happen, including Inertial
Measurement Unit (IMU) injection, Global Positioning
System (GPS) spoofing or LiDAR replay attacks. The authors
in [81] proposed a GAN-based motion planning method
resilient to these localization attacks. The GAN model takes
the previous robot’s position, velocity and attacked position

and gives the corrected robot position. This position is given
to the motion planning module, which consists of LSTM
and a deep-Q learning-based model. When the system is
attack-free, this model and the deep reinforcement learning
(DRL) model have the same success rate of 98%, but when
the system is under attack, the DRL model’s success rate
drops to 84%, but the proposed model has 97% success rate,
demonstrating a high success rate amidst attacks.

GAN is also used in [82] for Active Terrain Mapping
(ATM) for collaborative air-ground robotic systems. The
system consists of an Autonomous Aerial Vehicle (AAV),
which captures images and sends them to the ground
station, which controls the Autonomous Ground Vehicle
(AGV). A CNN is used to classify terrain into one of three
categories: grass, pavement, or concrete. As the terrain data
is limited, the three GANmodels, namelyGANgrass,GANpave
and GANconcrete augment the data, thereby increasing the
dataset, which increases the CNN classifier accuracy thereby
providing efficient path planning for UGV which uses
Rapidly Exploring Random Tree (RRT) algorithm. The
average path length used by this method is smaller than
others, and a CNN accuracy of 90.35% is achieved.

GAN and multiple steps AI-driven pipeline are used
in [83] for real-time robot navigation and augmented reality
visualization. A Micro Aerial Vehicle (MAV) captures its
surrounding images, and with the help of AirSim, a 3D
virtual simulation is created. Here, the GAN is used for
domain transfer between the real and virtual environments,
i.e., mapping the images between them. The shortest path
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in a virtual environment is computed by the A∗ algorithm,
and it is further made efficient and faster with the help of
3D Navigation Meshes, which reduces the waypoints. Each
waypoint is encoded with metadata like speed, time left
and obstacle position. GAN transfers the data in a virtual
environment to a Jetson Nano, which controls the MAV.

Table 4 captures the works on GANs. We now move on to
normalizing flow models.

C. NORMALIZING FLOW (NF) MODELS
Normalizing Flows are also generative models but they can
learn complex probability distributions by utilizing a series of
invertible and differentiable transformations. The NF models
produce the exact likelihood estimation, making thesemodels
useful in practical environments, more precisely, for proba-
bilistic modelling tasks. Other generative models like VAEs
will produce only the approximate likelihood, while GANs
cannot compute likelihoods explicitly. Traditional SLAM
algorithms approximate the uncertainties in localization
problems with the help of Gaussian distributions. However,
practical environments also contain non-Gaussian noise due
to odometry slip/grip error modelling and multimodal data
processing. So NF models play a crucial role in robot
navigation where the exact likelihood of uncertainty in
navigation tasks is computed, and the robot safety is ensured
by avoiding those specific points in the path.

A hybrid approach using normalizing flows is proposed
in [85] for robot navigation in a dynamic environment.
A Mecanum rover with LiDAR is used, and pedestrians
are detected using Distance Robust Spatial Attention and
Auto-regressive Model (DR-SPAAM) [93]. Two navigation
approaches are used. One is traditional learning based, i.e.,
uses a deep RL algorithm, and the other is based on the Opti-
mal Reciprocal Collision Avoidance (ORCA) algorithm [94],
which is a rule-based algorithm. The graph-NF model makes
a decision on when to switch between these two algorithms.
This model computes the likelihood of the present situation
with training data; if it is above the threshold, deep RL is used,
or else the ORCA algorithm is used. This switching ensures
that there is no collision with pedestrians. When the model is
tested in simulation, the proposed NFmodel has a 34% higher
success rate, and when practically tested, the deep RLmethod
has only a 16% success rate whereas the proposed NF-based
switching model has an 84% success rate.

Anomaly detection approach is used in [86] for safer robot
navigation in unknown outdoor environments. A quadrupedal
robot named ANYmal is used and teleoperated over various
terrains for data collection with its RGB-D camera. Initially,
Resnet-18 [95] is used for feature extraction. The NF
model used is real-valued Non-Volume Preserving (Real-
NVP) to learn the terrain’s probability distribution. The areas
with anomalies are detected based on scores of logarithmic
likelihood, and the robot should avoid these places. This Real-
NVP-based model achieved an area under receiver operating
characteristic curve (AUROC) of 0.85, which is 21% and

13% higher than using autoencoder and support vector data
description (SVDD) based models, respectively.

Normalizing-flows-incremental-smoothing-and-mapping
(NF-iSAM) is proposed in [88]. The authors model the
SLAM problem as a factor graph (where landmarks and
robot position are represented as nodes and robot sensor
data are represented by edges). Initially, the robot trajectory
is modelled to follow Gaussian distribution, and then a
series of invertible transformations are applied so that it is
converted into a more complex distribution that can capture
real-world disturbances. Finally, posterior distribution, i.e.
robot trajectory, is obtained, and a Bayes tree is used to update
it from time to time while the robot is navigating. However,
this model has computational challenges, and it is tested
only on small datasets. So the inference process is further
optimized in [89] by introducing lightweight NF models and
also updating only the affected branches in the Bayes tree.
It is worth noting that the model works on large datasets.

Traditional sampling-based motion planners (SBP) for
robots like RRT ∗, Bi − RRT ∗, and Informed − RRT ∗ have
limited performance as they perform random sampling and
also, there are chances of mode collapse or posterior collapse
due to the high varying nature of configuration space and
motion plan configurations. To overcome these challenges,
PlannerFlows are introduced in [91], which uses NF to
make the motion planner follow a conditional probability
distribution. This improves the model’s learning about the
environment as high-quality samples are produced.

NF is integrated with soft actor critic (SAC), an RL
algorithm, in [92] for controlling the robot for navigation
tasks. With the help of NF, the problem of the model
converging to sub-optimal local minima is avoided as it uses
a multimodal policy instead of a unimodal Gaussian policy.
As invertible transformations are applied because of NF,
the model can learn and adapt to the environment so that
exploration and learning efficiency are improved. The model
is tested on six MuJoCo (Multi-Joint dynamics with Contact)
and three PyBullet Roboschool tasks, which are simulation
environments. This SAC-NF model uses fewer parameters
and achieves higher performance (i.e. higher reward) when
compared to the SACmodel alone.We nowmove on to score-
based models.

D. SCORE-BASED MODELS (SBM)
Unlike VAEs, which learn a direct relation or mapping
between input and output or GANs, which perform adversar-
ial training, SBMs estimate the probability density gradient,
which is the data score. SBMs generate new data by filtering
out noisy inputs via iterative denoising. This approach allows
the SBMs to capture more complex features and model
the uncertainty effectively. Hence, SBMs try to learn the
score function, which is defined as the gradient of the
logarithmic probability density of the data distribution.
The newly generated data tries to move towards a higher
probability region by learning this score function. As SBMs
operate on probabilistic frameworks, they also provide
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TABLE 5. Normalizing Flow (NF) and Score-based Models.

uncertainty estimation inherently, making them suitable for
safety applications such as path planning or navigation in
dynamic environments. Some recent works on SBMs are
discussed next.

A conditioned score based model is proposed in [87] for
robot’s collision free trajectory generation. The surrounding
environment is represented as a black and white occupancy
map, and initial and target positions are included in it.
A signed distance function (SDF) loss is used to obtain
the information of obstacles using a CNN-based encoder.
The proposed model consists of a temporal U-Net, which is
trained with denoising score matching (DSM), and the score
function of all trajectories is computed. These trajectories are
further smoothened by refining, i.e. by removing noisy or
collision trajectories with the help of Langevin Dynamics and
SDF values. Finally, the shortest feasible path is considered
for robot navigation. The success rate of this model is 90%,
i.e. the generated trajectories of this model are 90% collision-
free trajectories.

A novel architecture of hand-drawn map navigation
(HAM-Nav), which uses vision language models (VLM),
is proposed in [90] for robot navigation in various diverse
environments. The input to the model is a simple freehand
sketch of a hand-drawn map where a robot path is drawn.
This map is converted to a graph representation with the
help of k-means clustering and various other networks,
including Google Cloud Vision API, grounding-DINO [96]
and Grounded-Segment Anything Model (G-SAM) [97].
The robot position is estimated using a localization engine
module, which consists of selective visual association

prompting (SVAP) and a GPT-4o VLM. This module uses
score-based prompting and selects the most likely robot
position. Then, the navigation planning engine (NPE)module
is used to choose the actions of the robot, i.e. moving
forward/left/right, which also uses score-based prompting.
This model is practically tested on a jackal-wheeled robot,
and it achieved a success rate of 78% with success weighted
by path length (SPL) of 0.714. Table 5 captures the work on
normalizing flows and score-based models. We now move on
to diffusion models.

E. DIFFUSION MODELS
One of the most widely used generative models today is
the diffusion model, which is a special case of score-based
models. They are inspired by the principle of non-equilibrium
thermodynamics. The model consists of neural network
architectures like U-Net or transformer, and the features given
as input to these models are extracted from encoders. The
training of these models consists of two stages, i.e., forward
and reverse processes. In the forward diffusion process, the
noise, generally Gaussian noise, is iteratively added step by
step over time. The reverse diffusion process, indicated by the
name, tries to predict the noise in data and removes it from the
data. This ability makes the diffusion model learn complex,
multimodal data to generate well-organized/structured data
like generating trajectories for robot motion planning. The
main advantage of the diffusion model is that it generates
diverse and high-quality data, i.e. high-quality, optimal and
feasible collision-free trajectories while maintaining stability
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during the training. As previously stated, in SBM, the score
function is the gradient of the logarithmic probability density;
in diffusion models, the score function is calculated at each
time step t , i.e., the gradient of the logarithmic probability
density at each t . By further imposing conditions on the
generative model, it can be used in challenging environments.
Some of the recent works are described below in this
subsection.

Figure 7 depicts robot navigation using the diffusion
model-based approach. Diffusion methods are used to
generate various paths for the robot to reach the destination.
The best among these paths is then selected.

The authors in [98] used RGB images captured from the
robot to generate trajectories with the help of a diffusion
model and transformer encoder with a masked attention
approach. This encoder allows the robot to switch its
task to either navigation (if a target image is given) or
exploration. This model achieves 98% and 90% success
rates in exploration and navigation, respectively, but has
limited performancewhen there are occlusions and has higher
inference time. So the Husky robot in [99] is equipped with
LiDAR and uses diffusion based trajectory generation (DTG)
model. The LiDAR readings, velocity data from odometry
and target information are given to the perception encoder.
The obtained feature representation vectors are given to
the diffusion model, which has Conditional RNN, where
sequential data is processed, and waypoints are generated.
The model is robust to occlusion and achieves higher real-
time performance, i.e., 29% higher distance ratio and almost
50% reduction in inference time when compared to [98].

Similarly, Resnet-18 is used as an encoder in [100] and
a denoising diffusion probabilistic model (DDPM) whose
structure is similar to U-net (i.e. rather than convolutional
layers, feature-wise linear modulation layers are used).
This model achieves 87% success rate in navigation. The
trajectories are generated 23 times faster than traditional A∗

algorithm but only experience difficulties during extreme
navigation cases, i.e., the path is either too short or too long.

One of the advantages of the diffusion model is that it
can generate multiple possible trajectories which can be used
for robot path planning. One such example is [101] where
multiple possible motion trajectory paths are generated.
This is a scenario where traditional Conditional Variational
Autoencoders (CVAEs) may not perform well. The diffusion
model produces samples iteratively and optimizes the trajec-
tories, leading to a collision-free optimal path for the robot
by denoising the sampled trajectories over multiple stages.
Although the training requires more computational resources,
the inference time is low and high-quality trajectories
are generated. This is further enhanced by introducing a
Conditional Diffusion Transformer in [102]. The proposed
Navigation World Model (NWM) generates realistic robot
movements based on the previous robot path and target
position despite restrictions or constraints enforced on
robot movements thereby preventing unnecessary deviations.
Therefore, this leads to 40% reduction in Absolute Trajectory

Error (ATE) and 52% reduction in Relative Pose Error (RPE)
when compared to the General Navigation Model (GNM)
in [107]. However, this model may experience difficulties
with predicting dynamic obstacles such as pedestrians
walking on the road.

One significant issue in robot navigation is the movement
of the robot in dynamic environments where humans are also
present. Some of the works include [17], [103], [104], [105].
A joint multi-agent interaction diffusion model (JMID) is
proposed in [103] for human motion prediction and Bilevel
Model Predictive Control (MPC) for robot path planning
without human collisions. These are tested on a clearpath
jackal robot in an indoor environment with up to three
persons moving around, and it achieves faster response, i.e.,
the robot reaches the target quicker with at least 10-15%
fewer deviations when compared to the other models like
AgentFormer or Constant Velocity Guess models. A local
diffusion model, i.e. denoising diffusion probabilistic model
(DDPM), is used in [104] for obstacle avoidance navigation
planning in various environments such as static, dynamic,
zigzag and maze-like scenarios. This model achieves a very
high success rate of 95% and 91% in static and maze-like
scenarios, almost double that of the LSTM-GMM model.
This model achieved high performance in local trajectory
planning but encounters difficulties with long-term planning
as it has limited observation horizons.

Linear Temporal Logic on Finite Traces (LTLf), a formal
logic framework where constraints that are dependent on the
time are used, along with diffusion model is developed in [17]
for a quadruped robot. This approach achieves efficient
and safe navigation in a constraint-driven environment
where both static and temporal constraints are handled. The
satisfaction rate (how good the generated trajectories are
following the given constraints) using this model is 35%
higher when compared to using the diffusion model alone.
Global information-guided conditional diffusion model (GI-
CDM) is proposed in [105], which improves state action
trajectories, i.e., improves off-line reinforcement learning
used for robot navigation. This global diffusion model is
best used for long-range navigation applications. Initially, the
observational encoder extracts the features from the dataset,
which contains robot sensor data (i.e. observations), robot
actions and global information. A U-net-styled diffusion
model is used, and a noise scheduler is used strategically
to add or remove the noise during the model training. The
generated trajectories from the diffusion model are improved
using a decision transformer and refined using reinforcement
learning. This model has shown 30% and 2% higher success
rates in navigation in static and dynamic environments,
respectively when compared to the Gaussian Mixture Model
(GMM).

There are also some efforts that go beyond a single
robot. One example is the multi-robot multi-model planning
diffusion (MMD) model proposed in [106]. Initially, all the
robots are fed with maps, input, and target positions, and
each robot uses an identical but separate diffusion model
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FIGURE 7. Illustration for robot navigation via a Diffusion-based approach.

TABLE 6. Diffusion models.

that produces a trajectory for each robot. Then, a search
algorithm named extended and Enhanced Conflict-Based

Search (xECBS) algorithm is used to ensure a collision-free
path is designed and scaled up to 40 robots. It performs
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better in comparison to other approaches such as likeMotion-
Planning-Diffusion-Composite (MPD-Composite) which do
not work well beyond six robots. The approach in [106]
is further improved by using a sequencing model for long
trajectories. This approach generates continuous and dynamic
trajectories rather than discrete grid-based approaches. This
can be used in warehouse automation as well as search and
rescue applications.

Table 6 presents a summary of the works on diffusion
models. We next move on to discuss about attention
mechanisms for robot navigation.

VI. ATTENTION MECHANISMS FOR ROBOT NAVIGATION
IN COMPLEX ENVIRONMENTS
Recently, attention-based models have garnered attention
for robot navigation in a variety of complex environments.
As indicated earlier, when the complexity of the environment
increases (for example, a cluttered environment or dynamic
environment with people moving or other robots also
moving), and when semantic goals are given, the classical
algorithms often do not perform well. In this context,
attention mechanisms [13], [18] have become a valuable
tool. The attention-based models have been used in various
navigation tasks, which mainly include audio or vision-based
navigation, object goal navigation, autonomous exploration,
and socially aware navigation, i.e., navigation when humans
are moving.

The attention mechanism allows the robot to focus on
relevant information like semantic, spatial or temporal
information in the high dimensional input data. This allows
the robots to prioritize certain things over others (for instance,
human movement in the scene). The models using attention
mechanisms are generally better generalizable to unseen
environments or new targets as they change or adapt their
focus to new environments dynamically. Although attention
mechanisms have few limitations like requirement of high
computational cost and requirement of large datasets, they
are widely used for navigation tasks as they offer higher
capabilities than traditional methods especially in complex
environments.

This section focuses on recent developments in appli-
cations of attention mechanisms in robotic navigation,
which are primarily categorized into three sub-sections:
transformer-based models, graph attention-based approaches
and a few other attention-based methods.

A. TRANSFORMER-BASED METHODS
Although transformers were originally developed for natural
language processing (NLP) tasks since they are good at
capturing long-term dependencies, they are also widely
used in robotic vision and navigation applications. Unlike
CNNs or RNNs and their variants, which process the
data hierarchically or sequentially, transformers can directly
model the relationship between any two elements in the
input data regardless of the distance between them. Trans-
formers employ a self-attention mechanism. This allows the

transformer to capture effectively global spatial and temporal
dependencies across input featuresmaking them very suitable
for complex navigation tasks. It is worth noting that complex
navigation tasks require the visual perception of identifying
target objects or obstacles along with long-term planning
including path planning. For example, for vision-based
navigation tasks, the vision transformer can be used for
enhanced path planning by integrating the transformer (for
modelling the environment) with classical path planning
techniques. The transformers described in this section include
spatio-temporal transformer [108], [109], [110], Vision
transformer [14], [111] and Crossmap transformer(CMT)
[112]. Although transformers require high computational cost
(as self-attention scales quadratically with sequence length),
there are recent efforts to develop lightweight transformer
architectures for deployment on resource-constrained edge
devices.

Figure 8 depicts robot navigation using transformers.
A robot with a transformer implementation is capable of
segmenting the wild road in the outdoor environment image
and predict a path in it.

He et al. [108] proposed a spatio-temporal transformer-
based policy with an optimization algorithm to capture
human-robot interaction in the context of social robot
navigation. A spatio-temporal graph is constructed where
robots and humans are represented by nodes (also called
agents), spatial edges correspond to the relationship between
agents at any point in time while temporal edges represent
the movement of agents over time. Three RNNs separately
process the information of nodes, spatial edges, and temporal
edges. The spatial and temporal features from the RNNs
are fused using a gated embedding mechanism and given
to a multihead attention transformer, followed by a soft
actor-critic reinforcement learning (RL) algorithm to opti-
mize the navigation policy. This framework achieves 99.2%
success rate with the average time taken by the robot being
10.1 seconds for reaching the target in the presence of five
humans.

A hybrid spatio-temporal graph transformer is designed
in [109] for socially aware navigation, i.e. robot navigation in
the presence of moving humans. The robot is equipped with
an RGB-D camera, and humans are detected with the help of
YOLO [113] and the DeepSort algorithm. A spatio-temporal
graph similar to the one in [108] is constructed. The spatial
transformer, which consists of multi-head attention and a
graph convolution network (GCN), creates a spatial attention
map that learns the spatial relationship between agents. The
temporal transformer, which has multi-head attention, creates
a temporal attention map that captures the agent’s trajectories
or path over time. Amulti-modal transformer, which contains
a self-attention transformer and a cross-modal transformer,
fuses spatial and temporal attention maps to capture human
behaviour. Finally, a fully connected layer acts as a decoder,
and the robot selects the action based on the soft actor
critic (SAC) RL algorithm. The authors introduced a new
social score metric, which includes navigation time, distance
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FIGURE 8. Transformer-based approach for robot navigation.

violations and failure rate. This spatio-temporal graph
transformer achieved a social score of 95.8, whereas Optimal
Reciprocal Velocity Obstacles (ORCA) and structural-RNN
have 22.6 and 81.2, respectively, when the experiment is
conducted in the presence of 20 humans.

Another spatial-temporal transformer is proposed in [110]
for robotic navigation in a crowded environment. Here, the
robot and person’s states (position, velocity, orientation)
over three time steps/time frames are given in sequence to
the model. The feature extractor (linear projection layer)
converts the sequence to an embedded feature vector and
gives it to the network. It consists of a global spatial state
encoder, a global temporal state encoder, and residual con-
nections between them. Finally, a value-based reinforcement
learning policy is used for selecting the optimal path. This
model has been tested on the Collision-Avoidance-with-
Deep-Reinforcement-Learning (CADRL) simulator and has
achieved double success rate and a higher reward than the
ORCA method within a shorter time.

For navigation tasks, various paths have to be analyzed and
the relation between different locations has to be analyzed.
So, representing the robot’s surrounding environment in the
form of a graph/map encodes the geometrical and topological
relations between different locations in the map. Also,
classical path planning algorithms can be integrated with the
map. Vision Transformer (ViT) [14] along with A∗ is used
in [111] for enhanced path planning for quadrupedal robots.
Initially, the environment is represented using a 2-D map
where 1 represents the presence of an obstacle (and otherwise,
0). This map is divided into patches, pre-processed, and given
to ViT. The ViT with its multiple self-attention layers, learns
the complex spatial relations in the map, and a guidance

map is constructed. Further, a differentiable A∗ algorithm is
used for finding the optimal path. The path planning time
is drastically reduced when compared to the A∗ algorithm
alone (15-60% reduction; 15% in a maze and 60% in a
mall).

The authors in [114] propose a navigation transformer for
the object-goal navigation problem. The robot is equipped
with an RGB-D camera, and YOLOv8 is used for object
detection. This information is further enriched with semantic
embeddings, and 3-d coordinates are obtained from depth
data. With the obtained information, a neighbourhood map
is created in the form of a binary grid. The transformer
uses this information to learn inter-object relationships,
and then LSTM is used to store this memory over
time. Finally, asynchronous advantage actor-critic (A3C)
reinforcement learning maps the state to actions, and the
action with the highest reward is selected. This navi-
gation transformer achieves 10% higher average success
rate than the attention-based semantic similarity network
(SSNet) [115].
A Map Attention with Semantic Transformer (MaAST) is

developed in [116] for efficient robot navigation tasks with
limited training data. The robot collects RGB-depth images
and semantic information. A 3-layer CNN extracts visual
features from fused RGB and depth images. The transformer
is used for processing the egocentric semantic map, and a
Gated Recurrent Unit (GRU) is used for temporal processing
and maintaining memory of fused visual and map features.
Finally, the proximal policy optimization (PPO) algorithm
is used for decision making for robotic navigation. This
MaAST framework achieves 13% higher success weighted
by path length (SPL) with 80% reduction in training steps
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when compared to the model [117], which only uses RGB-D
information.

A Relationwise Transformer Network(RTNet) along with
a heterogeneous zone graph (HZG), is proposed in [118] for
indoor object-goal navigation. The Detection Transformer
(DETR) [119] detects the object categories and visual
features from the captured RGB image. With the help of
HZG, the scene is reconstructed as a graph with nodes and
edges. The RTNet consists of a Node-to-Node (N2N) encoder
with a self-attention mechanism and an Edge-to-Node (E2N)
decoder with a cross-attentionmechanism. The asynchronous
advantage actor-critic (A3C) reinforcement learning uses the
features from RTNet to enable the robot to make the right
decision. This model achieves a 36% higher success rate than
using the A3C RL algorithm alone (The success rate (SR) of
A3C is 52% while that of RTNet is 88%).

A Crossmap transformer (CMT) is proposed in [112] for
vision and language navigation tasks. The language instruc-
tions for navigation are given to the language encoder, which
has a MiniLM network and a transformer. The surrounding
environment and the robot’s previous actions are provided in
images to the visual encoder with a ResNet-152 network. The
action decoder computes the likelihood of each action. These
language and visual encoders and decoders make the CMT
model the relationship between the instruction and navigation
path. The key contribution is double back translation(DBT),
where the CMT and CrossMap Speaker (CMS) are trained.
The CMS generates the path, and this path is also learned
to improve generalisation to unseen environments. This
model achieved 34% and 33% higher success rates in seen
and unseen environments when compared to the Seq2Seq
model [120].
The authors in [121] examine the role of causal under-

standing for vision-guided robot navigation. Causality-Aware
Transformer (CAT) networks are designed in such a way that
navigation is not treated like a language model, where RNNs
and transformers are used in such a way to process sequential
data, where predicting output equally depends on all past
inputs. CAT ensures that only one-step causality is taken,
i.e., the next state is predicted by only the current state and
action, not all past states. Although the past states indirectly
influence the next state, their effect is already present in
the present state. Initially, features are extracted from the
RGB image with the help of Contrastive-Language-Image-
Pretraining (CLIP) ResNet-50, and the embeddings are given
to the transformer. The causal understandingmodule enforces
single-step causality. Themodel is trainedwith reinforcement
learning and has achieved superior performance compared
to standard transformer and RNN models, with only 10% of
training steps (CAT took 20M steps while RNNs took 200M
steps for training).

A NavFormer is designed in [122] for target-driven
navigation in disaster-like situational scenes, i.e., unknown
and dynamic environments (where a global map is not
available). The NavFormer framework takes images captured

by the robot and the target image as input, and the data is
encoded with the help of dual encoders. The static encoder
extracts static environment features like walls and furniture
while the general encoder extracts features of dynamic or
moving obstacles. Here, the Jackal robot is used as the
main robot while the Turtlebot3 robots are used as dynamic
obstacles. The extracted feature vectors are processed by a
causal transformer, which is GPT-2 based. This model is
also tested for a real-world unseen environment with multiple
robots, i.e. three jackal robots in one experiment, and a jackal
robot along with three Turtlebot3 robots in another. The
NavFormer achieves almost double the success rate and half
the collision rate compared to the decision transformer.

Classical reinforcement learning-based approaches typi-
cally treat the goal state as a condition. Instead of taking
this view, the authors in [20] treat the goal state as an input
and develop a transformer-enabled reinforcement learning
scheme for autonomous-ground vehicle navigation. The
goal point coordinates and the most recent four images
are converted to embeddings and given to the goal-guided
transformer (GT) (modified visual transformer). From the
transformer, a goal-aware representation of the scene is
created and given to the SAC RL algorithm, which generates
robot actions. This GT-based RL has been shown to
outperform Visual-Transformer-based RL and CNN-based
RL.

Normally, the entire (robot) navigation is treated as
part of a modular pipeline in classical control methods
and perception and control modules are decoupled. The
authors in [123] take a different view and propose a
Control Transformer that treats goal-directed navigation as a
sequential decision-making task. The data from the camera,
LiDAR, and relative goal positions are embedded and sent to
the control transformer as tokens in sequence form. During
the training phase, the environment is represented using a
probabilistic road map (PRM). This model has been applied
on a Turtlebot3 and has achieved 96% and 71% success
rates in reaching the target in simulation and in a real-world
experiment, respectively.

A Pathformer (transformer-based framework) is proposed
in [19] for vision-based navigation in various off-road envi-
ronments(various terrains). Initially, Resnet-50 is used for
feature extraction, and then a transformer encoder-decoder
produces a segmentation mask of the image. The masks help
to classify various terrains such as rock, concrete, gravel and
grass. Then the masks are further refined, and a safe path
for navigation is generated with the help of waypoints. The
advantage of this model is that it only uses RGB images and
does not depend on additional sensors like LiDAR or GPS.

Sample inefficiency (the requirement of large datasets) and
limited computational resources are the two main problems
for implementing deep learning models on edge devices. So a
vision transformer pre-trained with Self-Distillation-with-
NO-labels (DINO) [124] is used in [125] for line follower and
obstacle avoidance tasks. The model is fine-tuned with just

VOLUME 13, 2025 132349



H. Sridharan et al.: Generative Models, Attention Mechanisms, and Adaptive Methods for Robot Navigation

70 labelled images, and the model’s resolution is adjustable
between 240 ∗ 240 and 960 ∗ 960 so as to balance
segmentation detail with inference speed. This ViTmodel has
been tested on the Duckiebot on the Duckietown platform.
The 1-block ViT and 3-block ViT are compared with CNNs
of 24,32 layers, and 1-block ViT has offered greater balance
with regard to detection accuracy and speed, whereas 3-block
ViT achieved higher detection accuracy.

The authors in [126] were among the earliest to integrate
the transformer architecture into a reinforcement learning
framework for multiple robot path planning tasks in which
the robots do not explicitly communicate with each other. The
transformer models the interactions between the agents and
also the temporal dependencies. Imitation learning, which
accelerates the training, is combined with a reinforcement
learning module consisting of a double deep Q-network
(DDQN). This model has achieved a higher success rate
and fewer steps are required to navigate than the existing
models (Decision Causal Communication (DCC) [127],
PRIMAL [128] ) when tested in simulation with up to
64 robots. It has also been validated in an indoor environment
with three robots.

The authors in [129] present a group-wise attention
mechanism for identifying the navigability of different
terrains from RGB images/videos. In particular, the authors
identify different terrain groups in off-road and unstructured
outdoor terrains. The captured RGB image features are
extracted using the backbone of modified mixed transfer
(MiT). The image is divided into patches and sent to a
series of encoders with the help of a multi-head self-attention
(MHSA) mechanism, which generates feature maps of
various resolutions. These maps are fused using a groupwise
attention head and further passed to the segmentation head
to get a coarse-grained semantic segmentation map. A robot
path is obtained with this map and Terrain Elevation-based
Robot Path planning (TERP). This model has achieved, on an
average 10% higher success rate and 37% reduction in false
positive rate of forbidden regions.

The transformer-based memory model is used in [130]
for interactive visual navigation in cluttered environments.
The navigation task is formulated as a Partially Observable
Markov Decision Process (POMDP). The robot captures
RGB and depth images, and CNN is used as a feature
extractor. These RGB and depth features, along with goal
position, are given to the transformer encoder, i.e., the believe
state encoder, which encodes the past observations into a
context-aware belief state. It consists of a stack of multi-head
attention blocks. It uses casual and local attention to maintain
temporal consistency and to focus on recent interactions,
respectively. The soft actor-critic (SAC) algorithm is used
to optimize the path. This model achieved 17% higher
success rate than using SAC alone in unseen environments
in Gazebo simulator. Table 7 captures the works on
transformers. We now move on to graph attention-based
methods.

B. GRAPH ATTENTION-BASED APPROACHES
For robotic navigation tasks, particularly in a dynamic
environment (involving humans) or multi-robot tasks, the
surrounding environment can be represented as a graph
so that the model can capture the interactions between
the robots themselves or human-robot interactions. The
nodes in the graph represent the robots or humans while
the edges represent interactions between the nodes. Graph
attention is effective for crowd navigation due to relational
modeling. Some of the tools used for robotic navigation tasks
include graph convolutional network (GCN) [131] and Graph
Attention neTwork (GAT) [132], [133], [134], [135]. GAT
uses an attention mechanism which uses attention weights so
that it can focus on most relevant neighbours.

Figure 9 illustrates how graph attention-based approaches
are useful for robot navigation. In a complex multi-agent
environment, collision avoidance is performed by applying
a graph attention network to extract the interactions between
robots.

Graph Attention neTwork (GAT) is used in [133] for robot
navigation in a dynamic environment where other robotic
agents alsomove. The attentionmechanism in GAT computes
the effects of nearby agents, and reinforcement learning
is used for learning navigation policy. Further, Optimal
Reciprocal Collision Avoidance (ORCA) is used to enhance
short-term safety, i.e. collision avoidance. The combined
GAT, RL and ORCA model has achieved a success rate of
98% in simulation when five other agents were present.

One more application of GAT can be seen in the hierar-
chical motion planning framework in [134] for multi-robot
navigation tasks. The robot is equipped with a 2-D laser
scanner, and the most recent three scans are sent as input.
Depending on the rule-based algorithm with the sensor data,
the motion selector chooses a collision avoidance policy
if there is an obstacle; otherwise, a target-driven policy is
selected. The target-driven policy guides the robot toward
its goal. The collision avoidance policy uses GAT with the
Proximal Policy Optimization (PPO) algorithm, where GAT
uses a soft attention mechanism for modelling interactions
between the robots. This model has achieved a success rate of
100% when tested on a circular simulation setting, whereas
CNN-based policy completely fails, andORCA achieves only
a 60% success rate.

A group-aware robot navigation framework is proposed
in [135] for socially compliant robot navigation. This
framework combines a group awareness mechanism (GAM)
with a spatio-temporal graph attention network (GAT). The
robot is equipped with RGB-D camera and 3D LiDAR. GAM
consists of YOLOv5, which is used for people detection;
Kalman filters are used to find their positions with the help
of LiDAR data, and groups of people are represented using
convex hulls. The robot and people are represented as a graph,
and spatio-temporal GAT consists of a graph convolutional
network (GCN) and LSTM network for modelling the spatial
and temporal interaction, respectively.

132350 VOLUME 13, 2025



H. Sridharan et al.: Generative Models, Attention Mechanisms, and Adaptive Methods for Robot Navigation

TABLE 7. Transformer-based models.

A Message Aware Graph Attention neTwork (MA-GAT)
is proposed in [132] for multiple robot path planning on
a large scale. Initially, the environment is represented in
the form of a map, and CNN with Resnet block is used
for feature extraction. A dynamic communication graph is
constructed where nodes are represented by robots and the
robots communicating are represented by edges. The robots
share feature vectors with the neighbour robots via graph
neural networks, and an attention mechanism is applied to
select the more relevant features. Finally, the policy network
decides the robotic action that needs to be taken. Thismodel is

trained on a 20 ∗ 20 gridwith 10 robots and, when tested on 50
∗ 50 gridwith 100 robots and 200 ∗ 200 gridwith 1000 robots,
achieved success rates of 95% and 82% respectively, showing
strong generalizability.

Classical robot navigation systems based on traditional
reinforcement learning tend to consider human-robot inter-
actions in a unidirectional fashion. However, the authors
in [136] have considered andmodelled both human-robot and
human-human interactions for robot navigation in crowded
environments and proposed a Local Map-Social Attentive
Reinforcement Learning (LM-SARL) model. This model
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FIGURE 9. Attention Graph-based approach for robot navigation.

consists of an interaction module, a pooling module and a
planning module. The human-robot interactions are modelled
by the interaction module with the help of coarse-grained
local maps. The pooling module, which consists of a self-
attention mechanism, is used to compute the attention score
for each person and aggregate the interactions into an
embedding vector. Finally, the planning module estimates
the value function of the robot and crowd states, which are
optimal for the robot’s safe navigation. This model achieved
double success rate and a higher reward than the ORCA
method within a shorter time.

A Heterogeneous Graph Transformer (HGT) along with
a task-driven attention mechanism is proposed in [137]
for hierarchical relational object navigation task. From
the RGB and depth images of the environment, a scene
graph is constructed. This graph is given to HGT with an
attention mechanism, and the extracted features are fused
with those extracted from RGB and depth images. This
model achieved a success rate of 88%, which is 30%
higher than using RGB-D features alone. Liu et al. [138]
proposed recurrent graph neural networks with an attention
mechanism for robot navigation in dense environments by
enabling the robot to be socially and intentionally aware.
Initially, a person’s future trajectory is predicted either by
the Gumbel Social Transformer (GST) or by the constant
velocity model. A spatio-temporal interaction graph is then
constructed with nodes as agents and edges corresponding
to interactions. The recurrent graph neural network includes
two attention mechanisms: one for modelling human-human
interactions and the other for robot-human interactions. It also
contains a Gated Recurrent Unit (GRU) to capture temporal
dependencies across time. This model achieved a success rate

of 89% in simulation and 83.33% in an indoor environment
when tested on the TurtleBot 2i robot.

Robot navigation, even with deep learning models,
becomes difficult when the crowd size increases. Recogniz-
ing this, learned attention is incorporated into a graph-based
reinforcement learning network in [131] for robot navigation
in crowds. The model, termed Gaze modulated Graph
Convolutional Network-based RL (G-GCNRL), consists of
attention, crowd aggregation and value networks. Both
attention and crowd aggregation networks consist of a
two-layer graph convolutional network where the attention
network learns (which) people to focus on based on human
gaze data, and these attention weights are given to the graph
convolutional network of the crowd aggregation network to
model the interactions between people and the robot. Finally,
the value network consists of reinforcement learning for
selecting the optimal robot path. This G-GCNRL model has
achieved 11% higher success rate and navigation was 16%
faster when compared to the socially-aware RL model.

MultiSoc is proposed in [139] for goal-directed robot
navigation with multi-robot implicit coordination (where
robots explicitly do not communicate with each other) in
crowded environments. MultiSoc integrates graph neural
networks (with attention mechanism) into the reinforcement
learning method for modelling the interactions (i) between
humans and (ii) between humans and robots. It consists of
two graph neural networks: an edge selector that constructs a
sparse graph that prioritizes the most important interactions
and a crowd coordinator that modifies nodes based on
its neighbourhood influences. The model uses trajectory
prediction and density factors to adapt to varying crowds.
This model achieved an 81% success rate when tested in
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the MultiCrowdNav simulator with six humans and six
robots.

A novel framework, named MARVEL (Multi-Agent Rout-
ing in Variable Environments with Learning), is designed
in [140] for multi-robot navigation in uncertain topological
environments. The model is designed to improve the group of
robots’ stochastic on-time arrival (SOTA) probability, where
edge traversability is unknown and only revealed to the
robot when it arrives at the edge’s starting node. The model
reformulates the problem into a Partially Observable Markov
Decision Process (POMDP). This model combines dynamic
adaptive graph embedding with entropy-based online experts
so that robots can collectively explore and adjust the paths
accordingly. This model has achieved a SOTA probability of
63%, whereas other baseline models have only achieved 30-
55%. Table 8 lists the various graph attention-based works.
We now proceed to discuss works that use other types of
attention mechanisms.

C. OTHER ATTENTION-BASED METHODS
Although transformer-based attention models and graph
attention-based models are widely popular, a few other
attention-based approaches have been developed recently.
These methods often include developing customized archi-
tectures or integrating with existing reinforcement learning
methods, path planners or spatiotemporal data represen-
tations. Most of these models focus on handling sensor
input, which can be used in path planning, i.e. focusing on
task-specific spatial regions or temporally varying patterns.
This improves the decision-making capabilities of robots,
particularly in dynamic or cluttered environments.

An Attention-based Value Classification Actor-Critic
(AVCAC) architecture is proposed in [141] for safe and
efficient robot navigation in unknown environments. Initially,
an encoder stores the input sensor data from LiDAR, RGB-
D camera, and a local attention module extracts key features
like goals and obstacles. The key component in this model
is a Value-Classified Rollout Replay (VCRR) buffer, which
acts as an experience buffer, i.e., it classifies and stores
the experiences in reinforcement learning. To avoid future
collisions, a lookahead multi-step prediction reward function
is used. This model is tested on an automated guided vehicle
and has achieved a 95% success rate.

A LiDAR-based place recognition system is proposed
in [142] for large-scale outdoor unstructured environments
like orchards where conventional global navigation satellite
systems are unreliable and often fail. The autonomous guided
vehicle is equipped with a LiDAR and Spatial Binary Pattern
(SBP) descriptor that encodes the environment’s spatial
structure and point density and converts 3-D LiDAR scan
into cylindrical voxel bins and then projects them on to a
2-D bird’s-eye view matrix. Then, an attention score map
is used to highlight the region of importance. Hierarchical
two-stage matching is used to detect loop closures. The first
stage is fast attention score map candidates search, which

eventually reduces the potential loop closure candidates. The
second stage is overlap estimations re-identification, which is
used to confirm loop closures in the first stage by ensuring
geometrically consistent matches are only accepted. This
model achieved improved localization accuracy.

A Spatio-Temporal Attention Deep Reinforcement Learn-
ing (DRL) model (STA-DRL) is proposed in [143] for
LiDAR-based robotic navigation. The model uses A∗ path
planner, and the next five upcoming waypoints and the
LiDAR scan data are given as input to the model. Next,
in the pre-processed stage, with the help of a Temporal Accu-
mulation Group Descriptor (TAGD), which uses Iterative
Closest Point (ICP) alignment, the dynamic obstacles are
focussed by removing the noise and compressing the LiDAR
data. The attention-based feature extractor has two parallel
streams/modules. Firstly, a spatial attention module detects
static obstacles and focuses on risky LiDAR scans, i.e.,
possible collisions. Secondly, a temporal attention module
is used for detecting dynamic obstacles. The spatial and
temporal attention module features are fused and fed into
a Deep Deterministic Policy Gradient (DDPG) network to
achieve smooth and collision-free robot navigation.

The authors in [144] proposed attention-based deep
reinforcement learning for robotics navigation tasks in highly
dynamic environments. The self-attention mechanism is
integrated into the Twin Delayed Deep Deterministic (TD3)
policy gradient algorithm for context-aware decision-making
during navigation. This attention-based TD3 model achieves
4.8% and 2.5% higher success rates in navigation in static
and dynamic scenes, respectively, when compared with
using TD3 alone. Table 9 lists the other attention-based
approaches.

VII. ADAPTIVE APPROACHES FOR ROBOT NAVIGATION
While attention mechanisms and generative models have
been of tremendous interest for robot navigation during the
last few years, adaptive methods have been studied for much
longer. Early efforts are based on reinforcement learning [21].
The reinforcement learning paradigm relies on the notions
of agent, action, reward and penalty. In the context of robot
navigation, a reward is for reaching the goal (or reducing
the distance to the goal) while a penalty is applied when
a robot gets close to an obstacle (or moves farther from
the goal). Recently, an extension named deep reinforcement
learning that combines classical reinforcement learning with
deep networks (for example, convolutional neural networks)
has been proposed to enhance performance. Other adaptive
methods have also emerged.

In this section, we survey the recent literature on adaptive
methods relating to graph neural networks and knowledge
graphs, deep reinforcement learning as well as other
approaches such as imitation learning and situational graphs.
It turns out that adaptive methods can be readily combined
with attention mechanisms [143] to enhance the performance
of navigation strategies.
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TABLE 8. Graph attention based models.

TABLE 9. Other Attention-based Models.

A. GRAPH NEURAL NETWORKS AND KNOWLEDGE
GRAPHS
Graph neural networks (GNNs) are neural architectures to
process graphs [9]. One type of graph of particular interest
in robot navigation is a knowledge graph. Knowledge graphs
encode a set of facts about objects by defining relations
between them [9]. In other words, knowledge graphs are
structured representations of facts and consist of entities,
relationships and semantic descriptions [145], [146], [147],
[148]. Graph neural networks have been extensively studied
for solving multi-robot navigation problems. Knowledge
graphs are valuable from the point of view of semantic
navigation and object-goal navigation.

Figure 10 depicts the use of knowledge graph for robot
navigation. In the case of service robots deployed indoors,
an RGB-D image of environment is captured and object

detection is performed on this image. A knowledge graph
is constructed using the detected objects and their distances.
The knowledge graph is valuable for capturing semantic
information. It also serves as a means to construct movement
relationship among entities [149] and to design action plans
adaptable to run-time [150].
Early works utilizing graph neural networks for motion

planning and navigation [151], [152] directly represent the
robot’s configuration space. Recent work [153] involves
utilizing knowledge graphs to obtain an intermediary repre-
sentation for compartmentalizing the workspace. A frame-
work termed RoboPlanner is presented in [150] to generate
action plans in autonomous robots. Knowledge property
graphs are used to model the knowledge of world models,
capabilities of the robot as well as task templates. The
authors present simulation results. Extension of the work
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FIGURE 10. Knowledge graphs for robot navigation.

in [150] to physical robots would be valuable. The authors
in [154] consider the role of representation and reasoning
about semantic knowledge in robotics. In particular, they
discuss the use of knowledge graph embeddings as semantic
representations and identify the challenges with respect to
incremental updation of the representation. The work in [154]
can be extended to incorporate data from physical robots in a
dynamic setting.

Graph neural networks have been valuable for decentral-
ized multi-robot path planning and navigation [155], [156].
These networks work in conjunction with other deep neural
networks such as CNN. For instance, the features extracted
by CNN are communicated among robots via graph neural
networks [155]. The work in [155] assumes zero delay in
communication between robots. Studying the effectiveness of
their approach relaxing this assumption would be valuable.
Graph neural networks also play a valuable role in robot
inference with other robots and router nodes [156]. The
performance of the approach in [156] can be enhanced by
incorporating memory units and attention modules.

Another use of graph neural networks is for learning con-
trol admissibility models for multi-robot navigation [157].
The approach in [157] is scalable but does not permit
coordination and communication between the robots. This
can lead to critical situations (such as deadlocks). This is
an area that can be further explored via modification of the
architecture.

An approach to robot planning based on behaviour tree
and knowledge graph is proposed in [7]. The authors describe
building of a semantic network for planning via an ontology

knowledge base, a scene knowledge base, an environment-
aware knowledge base and a task knowledge base. Using
these, task behaviours are created and reasoning is performed.
A technique for navigating to a remote object invisible in the
current view is presented in [158]. The authors construct a
scene knowledge graph and then design a reasoner based on
probability models and a navigator for moving to the object
of interest. However, the navigation length and navigation
time are somewhat high. There is scope for reduction of
these. Further, the success of the navigation task itself can be
enhanced. The task of inspecting substations autonomously
is studied in [159]. Multisource data fusion is considered and
the role of knowledge graph is investigated for summarizing
and visualizing a five-way manual of substation inspection.
Capturing semantic information via knowledge graphs in
the context of SLAM has also been studied [149]. The
approach has been tested in simulations and experiments. The
approach in [149] can be enhanced to obtain better real-time
performance and accuracy.

An approach to efficiently reach predefined goal objects
with just few steps is presented in [160]. The authors align
the knowledge graph with visual perception for this task.
Another work on object-goal navigation using knowledge
graphs is reported in [161]. The method in [161] is based
on three modules, namely an object-goal navigation module,
a cognitive memory module and an interaction module. The
approach in [161] has been tested in experiments but there
are limitations in semantic segmentation that may sometimes
lead to misidentification of personal objects of the same
class.
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A technique for visual navigation based on knowledge
graphs and a value regularization policy is reported in [162].
The approach in [162] can be extended to enhance the
performance for dynamic environments. A method based on
knowledge graphs to increase the search accuracy of Robot
Operating System (ROS) packages is described in [163].
Some works use graph neural networks and knowledge

graphs along with other contemporary artificial intelligence
approaches such as transformers. The authors in [164] present
a goal-oriented approach to visual semantic navigation by
combining the knowledge graph with transformers. Agents
are made to learn how to make a series of action decisions
based on visual input to find a specified goal. Several
directions for further study of the approach in [164] are
possible. The authors indicate that probabilistic relation-
ships between co-occurent objects may be considered for
making the navigation scheme more robust. Table 10 lists
methods that use knowledge graphs. We now proceed
to the next adaptive method, namely deep reinforcement
learning.

B. DEEP REINFORCEMENT LEARNING
Deep reinforcement learning (DRL) was introduced as a
paradigm for playing Atari 2600 games in [22]. A deep
Q-network was proposed for human level control by the
same research group in [23]. Since then, deep reinforcement
learning has been applied to a wide range of tasks. We focus
on its utility for robotic navigation.

A picture illustrating an application of deep reinforcement
learning to navigation in agricultural robotics is shown in
Figure 11. The robot arm is assumed to be mounted on a
mobile platform which traverses the field where the apples
are grown. The input to the machine learning method running
on the robot is an image. The robotic arm (on themobile base)
is trained to go from its initial position to the final position.
This process is repeated for many samples and this leads to
update of the model parameters. Through images, the robotic
arm adapts andmoves to pluck the ripe fruits.We now discuss
various efforts reported in the robot navigation literature on
using deep reinforcement learning.

Works on robot navigation using deep reinforcement
learning can be classified based on the nature of the
environment. Navigation in pedestrian-rich environments
has been studied by a number of research groups [136],
[166], [167], [168], [169], [170]. Some works look at
the problem as a crowd-aware navigation task. Different
networks have been used in these works in combination
with the basic reinforcement learning paradigm. In particular,
Long Short Term Memory (LSTM) network [136], [166]
and Convolutional Neural Network (CNN) [168], [170] are
frequently used as part of the policy network. We now briefly
discuss the contributions on crowd-aware navigation.

The authors in [166] develop a collision avoidance with
reinforcement learning algorithm that takes advantage of
the GPU-based asynchronous advantage actor-critic scheme

in [189] for policy learning. Experiments with a mobile
robot as well as multiple multirotors are reported. A crowd-
aware robot navigation scheme is presented in [136] which
incorporates an attention mechanism. The goal of the
attention mechanism is to learn the collective importance of
neighboring humans for socially compliant navigation. The
authors report experiments with the Segway platform and
demonstrate that their approach is time efficient. An approach
to get a robot to unfreeze in dense pedestrian crowds is
presented in [167] and it takes into account the coordination
between robot and humans. However, themethod experiences
challenges due to the use of only 2D LiDAR information and
can be enhanced with semantic knowledge as well as vision
data. Robot navigation in a crowded environment is handled
by a combination of imitation learning and reinforcement
learning in [168]. The method in [168] processes information
about static and dynamic objects separately and this enables
the robot to move differently when aproaching static obsta-
cles thanwhen encounteringmoving pedestrians. Themethod
has a somewhat higher rate of collisions with agents in the
field of view as well as those outside the field of view and
this is an area where further enhancements are possible. The
authors in [169] present an approach that uses graph neural
networks in conjunction with reinforcement learning to learn
local interactions between different pairs (such as object and
robot, object and object). A hybrid scheme that combines the
dynamic window approach to collision avoidance [190] with
deep reinforcement learning is studied in [170].

Navigation with the reinforcement learning paradigm by
legged robot structures has also been explored by a few
research groups [171], [172], [191],. Awalking pattern gener-
ator becomes an important component of these designs. Deep
reinforcement learning is shown to be an effective method to
address the limitations ofmodel-based control for thewalking
robots. The authors in [171] identify the challenges that arise
including (imprecise) tuning of award functions and absence
of guarantees with regard to safe operation. They then
develop a constrained guided policy optimization framework
for tracking base velocity commands. The sophistication
of the environment considered in [171] is not high and
the authors indicate the possibility of using perception
data in the future for handling more challenging terrains.
An approach that combines model-based and model-free
methods for quadrupedal locomotion in challenging terrains
in developed in [172]. The components of the design include
a terrain-aware planner and a foothold plus base motion
controller. Excellent results are shown for walking over a set
of large gaps with different sizes. Humanoid locomotion is
studied in [191] by formulating a Markov decision process
that aids in safe and data-efficient learning.

DRL has also been valuable to perform navigation
under non-ideal conditions (such as varying illumination).
An example is the work in [177] where the authors introduce
the notion of generalized computation graphs for self-
supervised DRL. Grid-based navigation using DRL has been
studied by a few groups [175], [176]. In this, the use of a
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TABLE 10. Graph Neural Networks (GNNs) and Knowledge Graph-based Methods.

variation of LSTM, namely Gated Recurrent Unit (GRU) has
also been studied [176]. Navigation seeking a specific object
has also been approached via deep reinforcement learning.
The authors in [181] use color as a means for the robot to
search for an object. It is worth noting that this problem
(referred to also as object goal navigation) has also been
explored using attention mechanisms.

The idea of using context for navigation has been explored
from a deep reinforcement learning perspective in [180]. This

is compared by the authors with the dynamic window-based
approach for navigation used in [170]. The benefits of the
high-level semantics-based approach in [180] are in terms
of safety and robustness. The work in [180] has potential
for further improvement by addition of more semantic
classes (including long corridors, doors) into the training
environment.

Navigation in rough outdoor terrains has also been studied
using the deep reinforcement learning approach [178], [179].
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FIGURE 11. Deep reinforcement learning for agricultural robotics.

TABLE 11. Deep Reinforcement Learning-based methods (Sim denotes Simulation while Expt denotes experiments with robots).

A sim-to-real pipeline for navigation is proposed in [178].
The simulated environment is used to provide simulated robot
sensory data which serves as input to the deep reinforcement
learning module. It is shown that the DRL approach in [178]
has a success rate of 87% and further, the DRL approach leads
to the shortest cumulative distance travelled. The authors
in [179] report a DRL network that uses raw sensor data
from the robot’s onboard sensors to determine a series of
local navigation actions for the robot. It is worth pointing

out that a mapless navigation strategy is particularly valuable
in this outdoor setting and hence DRL becomes a natural
choice. DRL has also been extended to the scenario when
multiple mobile robots perform point-to-point navigation.
Approaches based on hierarchical relational graph [173] and
hybrid control [174] have been studied for this purpose.
Table 11 captures the various works on navigation using deep
reinforcement learning. We now briefly discuss a few works
on other adaptive methods.
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C. OTHER ADAPTIVE METHODS FOR ROBOT NAVIGATION
Recently, the notion of Situational Graphs has been used for
robot navigation. These graphs enable the robot to understand
the environment in which it operates. Situational graphs
are designed to adapt to changing environmental conditions.
They bridge LiDAR-based geometric simultaneous localiza-
tion and mapping with scene graphs [192]. Studies with
legged robots are reported in [192]. The current experiments
assume aManhattan world (corresponding to the existence of
three mutually orthogonal directions). Relaxing this would be
a valuable extension to the work. Situational graphs have also
been studied for robot localization in [193].

Another adaptive approach for robot navigation is imi-
tation learning [194], [195], [196]. Imitation learning is
slightly different from reinforcement learning. Here again,
an agent is involved. However, imitation learning refers
to an agent’s acquisition of behaviours by observing a
teacher (expert) demonstrating a certain task. An approach
for target-driven visual navigation in indoor environments
based on imitation learning is presented in [187]. The method
is based on learning a variational generative module from
expert demonstrations. The power of the technique is shown
via improved training data efficiency and helps to perform
map-less navigation.

VIII. KEY FINDINGS AND FUTURE RESEARCH
DIRECTIONS
In this section, we first present a summary of the important
findings of this survey. This is followed by a discussion on
potential topics for further study.

A. SUMMARY OF MAIN FINDINGS OF THIS SURVEY
As surveyed in section III, several classical works are based
on fuzzy logic. Someworks have used simple neural networks
(with small number of hidden layers) to tune parameters
of membership functions that are part of the fuzzy logic
strategy. Challenges in crowd-aware navigation have largely
been not explored in classical works. In general, robots have
performed navigation in environments of low sophistication.
Further, the adaptability has been limited leading to difficul-
ties in handling highly challenging scenarios.

During the last few years, there has been a concerted effort
on using contemporary learning models for robot navigation
in complex environments. In particular, generative models,
attention mechanisms and advanced adaptive methods have
been used to handle a wide variety of scenarios in robot
navigation.

In the initial stages, VAEs and GANs constituted the
primary generative models of interest in robot navigation.
VAEs have found applications in self-localization and
scenarios involving navigation on plain surfaces. GANs
have been useful for predicting next states corresponding
to human movements during robot navigation. They have
also enabled completing a discontinuous navigation path.
In recent years, additional generative models have been

proposed. One of them is the normalizing flow-based
model which has enabled calculation of exact likelihood
of uncertainty in navigation tasks thereby contributing to
safety of navigation. Score-based models are also useful in
uncertainty estimation thereby enabling safe robot navigation
in dynamic environments. A special type of score-based
model, named diffusion model, has been useful to generate
multiple paths enabling choice of one that is best suited for a
mobile robot in point to point navigation.

Two types of attention mechanisms have been predomi-
nantly used for robot navigation tasks. The first, based on
transformers, is a deep learning model just like convolutional
neural networks. However, transformers have the capability
to model the relationship between two elements in input
data regardless of the distance between them. This feature
enables transformers to capture global spatial and temporal
dependencies across input features which contributes to
enhanced visual perception for effective target-driven robot
navigation. The second type of attention mechanism, based
on graph attention networks, involves a graph representation
where the nodes correspond to humans/robots while the edges
correspond to the interactions between robots and humans (or
between robots). As a consequence, graph attention networks
play a valuable role in socially-aware robot navigation and in
multi-robot navigation.

Adaptive approaches have a long history starting with
basic reinforcement learning for robot navigation. These have
been enhanced and currently, graph neural network-based
approaches and deep reinforcement learning play an impor-
tant role in navigation in a wide range of interesting
scenarios. Graph neural networks (along with knowledge
graphs) have also played an important role in multi-robot
navigation similar to graph attention-based methods. Further,
semantic navigation has been specifically addressed via
knowledge graphs. Navigation in dynamic environments via
deep reinforcement learning has taken off recently in a
major way extending some work prior to 2010 (on basic
reinforcement learning).

Examination of the efficacy of combining different styles,
for example adaptive methods with attention mechanisms,
has also been studied with a view to understand performance
in unknown environments.

B. FUTURE RESEARCH DIRECTIONS
We have listed potential enhancements to specific works in
the tables earlier. In this section, we present some broad
directions for further investigations.

1) ROBOTIC NAVIGATION BASED ON SITUATIONAL
AWARENESS
The role of deep network models for localization and object
detection during navigation has been explored. We have
also discussed adaptive methods such as deep reinforcement
learning to handle complex environments (such as a maze)
for navigational tasks. Another promising direction for
further studies is based on examination of cognitive and
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developmental systems for navigation. In particular, it would
be useful to look at cognitive and experience map con-
structions [197] and take advantage of such representations
during navigation. The authors in [197] describe a situational
awareness fitting network which helps for navigation. The
position of a robot in a path is mapped to a situational
awareness value. It would be useful to investigate if attention
mechanisms can be combined with the notion of situational
awareness to enhance the performance of robot navigation in
sophisticated environments.

2) ROBOT NAVIGATION WITH QUANTUM MACHINE
LEARNING
Quantum machine learning [198] has been actively
researched during the last decade. Efforts on using quantum
computing and quantum machine learning to robotics are
also underway. The authors in [199] study quantum deep
reinforcement learning for robot navigation tasks. While the
efforts are currently limited to simple systems, this area holds
tremendous promise for more detailed studies focusing on
complex navigation tasks.

3) OTHER EMERGING PARADIGMS FOR MOBILE ROBOT
NAVIGATION
Recently, a method for synthesizing novel views of complex
scenes has been proposed in [200]. It is based on representing
the scenes as neural radiance fields. Neural radiance fields
have been applied to vision-only robot navigation in [201].
It would be of interest to examine if generative models could
be combined with scene representation methods to enhance
the success of the navigation task.

In the context of approximate computing and when
energy efficiency is the goal, the neuromorphic computation
paradigm has proven to be useful. This has a natural
bearing on mobile robot tasks (since the on-board power
support is limited). Neuromorphic hardware accelerators for
reinforcement learning to perform obstacle avoidance for
mobile robots are being actively researched [202]. Additional
investigations in this area particularly in the context of
handling uneven terrains and deployment of energy-efficient
solutions on mobile robots would be valuable.

4) ENVIRONMENTS WITH LIMITED ILLUMINATION
One of the challenges with robot navigation in outdoor
environments is variation in lighting. This can happen during
different times of the day as well as during different seasons
(rainy period or winter with fog for instance). Some of the
early approaches [43] relied on stereo vision to get a map
which could then be used for navigation. However, challenges
have existed with regard to the accuracy of the approaches
besides the computational resources (memory in particular).
With the advent of contemporary learning methods based on
generative models and deep reinforcement learning, there has
been significant advancement in this direction. One example
is the work in [203] on using generative adversarial networks

for visual SLAM in low-light conditions. Further work in this
area would be valuable especially to handle a highly cluttered
environment.

5) BEYOND SINGLE ROBOT NAVIGATION
We have discussed largely the penetration of various current
learning methods into the world of mobile robots operating
standalone. However, there are a number of scenarios where
multiple robots are involved.

Multiple mobile robots typically rely on a network
for communication and accomplishment of the task in a
coordinated way. However, in practice, the network may not
be reliable or there may be disruption in communication due
to the presence of obstacles in the environment. Under these
circumstances, learning strategies come in handy. There has
been limited work on use of contemporary learning models
when multiple robots are involved.

6) HYBRID METHODS FOR ROBOT NAVIGATION
There have also been efforts where the starting point is an
adaptive method and generative models have been incor-
porated to enhance performance. One example is the work
on target-driven visual navigation via generative imitation
learning [187]. Extension to arbitrary targets and completely
unseen environments remains a challenge.

IX. CONCLUSION
This review has been directed to understand the different
ways in which contemporary learning approaches based
on generative models, attention mechanisms and adaptive
methods have been used for robot navigation in complex
environments. It has been observed that these approaches
have enhanced the success of robot navigation in a variety
of highly challenging environments.
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