
Interaction-Aware Control for Vegetation Override in Robotic Off-road
Environments
Charles Norena,∗, Bhaskar Vundurthya, Sebastian Scherera and Matthew Traversa

aThe Robotics Institute, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213-3890, Pennsylvania, United
States of America

A R T I C L E I N F O

Keywords:
Trajectory Optimization
Vegetation Override
Off-road Driving
Robotics

A B S T R A C T

Robotic systems tasked with completing off-road economic, military, or humanitarian missions often
encounter environmental objects when traversing unstructured terrains. Certain objects (e.g. safety
cones) must be avoided to ensure operational integrity, but others (e.g. small vegetation) can be
interacted with (e.g. overridden/pushed) safely. Pure object-avoidance assumptions in conventional
robotic system navigation policies may lead to inefficient (slow) or overly-cautious (immobilized)
traversal behaviors in off-road terrains. To address this gap in system performance, we draw inspiration
from existing hybrid dynamic system control literature. We have designed a nonlinear trajectory
optimization controller that utilizes vegetation-interaction models as a jump map in the dynamics
constraint. In contrast to purely vision-based navigation policies which classify the traversability
of obstacles, the allowable subset of objects with which the vehicle can safely interact is now
characterized by a data-driven collision model and the existence of a dynamically-feasible trajectory
which satisfies the contact constraints. The controller’s capabilities are demonstrated on a full-sized
autonomous utility task vehicle where objects including posts and trees of up to 25.4 [mm] and 81.8
[mm] diameter are overridden.

1. Introduction
When [I am] going through vegetation and driving
through or over it, [I] always have it in the back of my
head how I am going to hit it. Typically that is head on
with the front bumper as that will be the strongest
point on the vehicle and give me the best leverage to
run over [the vegetation] and go through it.

Ryan Arciero, Professional Off-road Driver

The execution of off-road vehicle operations is influ-
enced by the decision of whether to take an action to “avoid”
or “strike” environmental objects (Rybansky, 2017). As seen
in the quote above, when striking vegetation, professional
off-road racing drivers carefully internally model and allow
certain collisions for safe travel off-road. It stands to reason
that in order to emulate the high performance of professional
drivers in off-road conditions, robotic vehicles will also need
to consider the same decisions about collisions. However,
there is a great imbalance of work in the development of
the “avoid” and “strike” actions for robotic platforms, with a
majority of work centering on the “avoid” action. We believe
that this imbalance has led to a capability gap in robotic
off-road operations that require vegetation override. Specif-
ically, we claim that robot control policies which rely solely
on avoiding environmental objects exist within a paradigm
that both inadequately represents and models the challenges
regarding off-road terrains and environmental objects.
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For tasks such as on-road (Paden et al., 2016) and
on-trail robotic operations, robotic vehicles generally only
demonstrate the need for avoidance capabilities. Require-
ments reaching back to the Defense Advanced Research
Projects Agency (DARPA) Grand and Urban Challenge(s)
(Thurn et al., 2007; Urmson et al., 2009) reflect the need
for certain areal or object avoidance behaviors. Thus, many
methods have evolved in the field robotics, planning, and
control domains to address such requirements. Express-
ing object avoidance as a general constraint in the state
space for both state-based planning (Lavalle, 2006) and
for optimal-control-based approaches (Jianyu et al., 2017;
Howell et al., 2019) are well-established (Paden et al.,
2016). Furthermore, the use of penalty-based methods for
object avoidance (Williams et al., 2018) and avoidance-
guaranteed “proof-by-construction” techniques have seen
renewed attention in recent years (Liu and Tomizuka, 2014;
Noren et al., 2021). However, the quote above speaks to the
need to traverse objects, and thus, only taking avoidance
actions or forbidding contact may not reflect expert driving
behavior.

Although works developing the “strike” action set are
in fewer numbers, the field robotics, planning, and control
communities have all evolved different means to reason
about collisions. The approaches from the field robotics
community, such as classifying objects as “strike-able” via
visual measures of object geometry or through the use of
virtual and physical bumpers (Kelly et al., 2006) draw from
the practical needs of robotic platform operation. High-level
planning methods, such as those described by Rybansky
(2017), develop collision rules dependent on the vehicle
configuration and environmental structure to govern expec-
tations (for example, maximum traversal speed through an
area) on vehicle operations. Outside of treating contacts as
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disturbances, control approaches generally fall into two cate-
gories: through-contact models and hybrid-contact models.
Through-contact models attempt to capture the nonsmooth
physics of the interaction and directly evaluate those physics
during the determination of the control (Posa et al., 2013;
Howell et al., 2023). Hybrid-contact models develop rules-
based functional mappings to model the changes of state
associated with a discrete event (Hargraves and Paris, 1987)
such as a collision. These methods are commonly used
in direct collocation trajectory optimization problems for
legged locomotion (Kelly, 2017). Unfortunately, many of the
methods that allow contact for a “strike” action solely deal
with geometric representations of the terrain or object and do
not capture all aspects needed for traversing or “overriding”
an object.

Furthermore, an additional complicating factor in uti-
lizing contact models for robotics applications lies in their
ability to be utilized for online reasoning. Such constraints
on real-time operations are common in the planning do-
main, where no assurances exist on an object-interaction-
free path. These types of problems are known as the “navi-
gation among moveable obstacles” (NAMO) problem (Wil-
fong, 1991). In this particular problem, the goal is to enable
the planning entity (e.g., robotic platform) to restructure,
interact with, or rearrange the environment in order to meet
the planning entity’s goals (Ellis et al., 2022). Early ap-
proaches to the NAMO problem performed a state-space
decomposition to find manipulation points, and then per-
formed a heuristic search over the freespace configuration
components in order to avoid the complexity of multi-object
planning (Stilman and Kuffner, 2004). Recently, Saxena
has shown that connecting the problem to the multi-agent
pathfinding domain allows for a decomposition of the prob-
lem into a configuration-search step and a physics simu-
lation step (Saxena et al., 2021; Saxena and Likhachev,
2023a,b). This online simulation of physical interaction has
proven computationally costly and difficult to run in real-
time, though attempts at learning dynamical constraints
(Scholz et al., 2016) and massively parallelized simula-
tion of simple models (Abraham et al., 2020) have shown
improvements to plan computation speed. Unfortunately,
these methods often do not leverage existing terramechanical
modeling studies or rely on compute-expensive processes
which may not be available on a robotic platform.

Due to the prevalence and need to interact with veg-
etation in the common area of operations of interest, the
off-road mobility and cross-country movement communi-
ties have a long history of modeling such nongeometric
requirements for vegetation with low computational require-
ments. For completeness, we first provide a brief overview of
classical and contemporary vegetation-interaction modeling
techniques before we state the claimed contributions of this
work.

The U.S. Army Engineer Waterways Experiment Sta-
tion (Blackmon and Randolph, 1968) and the U.S. Army
Engineer Research and Development Center (Mason et al.,
2012) have developed models for the override of different

post and vegetation classes. These studies contribute to
larger mobility models, such as the North Atlantic Treaty
Organization (NATO) Reference Mobility Model (NRMM)
(Bradbury et al., 2018), which are used to analyze the capa-
bilities of both crewed vehicles and robotic platforms (Vong
et al., 1999). The NRMM continues to see advancements
and refinements to develop higher-fidelity representations of
vegetative objects, with recent work focusing upon improv-
ing override-force modeling utilizing a robotic test platform
(Moore et al., 2024).Yet, advancements in the vegetation-
interaction modeling domain are not solely captured within
the NRMM. Rybansky (2020) performed a significant study
that conducted several vegetation overrides with different
classes of vehicles. However, Rybansky’s mobility models
remain confined to the domain of vehicle mobility analysis
and were not used in an online capacity for reasoning in
robotic platform operations.

Finally, work in the traversability-prediction domain for
off-road robotic driving has also demonstrated the capability
to implicitly represent vegetative objects to a robotic system.
While many off-road driving datasets include multi-modal
sensory data depicting vegetative objects (Jiang et al., 2020),
other datasets may include vegetation interaction data itself
(Sivaprakasam et al., 2024) or label the traversability of veg-
etative objects by considering the vegetation models from
the NRMM or Mason et al. (2012) in the labeling process
(Sharma et al., 2022). Implicit representations of vegetative
objects can then be captured in the learned off-road mobility
and traversability policies for off-road operations (Castro
et al., 2023; Frey et al., 2023; Chen et al., 2024; Frey et al.,
2024). In particular, online learning methodologies can take
advantage of observed proprioceptive data Castro et al.
(2023) or human demonstration Frey et al. (2023) to adapt
the system behavior online in response to environmental
stimuli, but these works do not directly model collisions.

In particular, the current state-of-the-art for off-road
robotic systems that perform traversal with collisions uti-
lizes haptic feedback to update the robotic system’s confi-
dence of its environmental obstacle model online Prágr et al.
(2023), Undoubtedly, when model confidence is low, such
a learning-based approach provides a robust foundation for
constructing a model representation online. However, the
approach does not take advantage of pre-existing collision
models which allow for aggressive maneuvers that exploit
awareness of the model during online operation.

We propose an interaction-aware control system that
models the effects of non-prehensile interactions on a robotic
platform’s motion. This system not only provides a princi-
pled methodology for reasoning about interactions with veg-
etative objectives (like “striking") but also more accurately
captures the system’s motion when such interactions occur.
As far as the authors are aware, this is one of the first works
that pairs vegetation collision models with online trajectory
optimization to override vegetation. In particular, this work
accomplishes the above research objective by:
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1. Efficiently modeling vegetation interactions through
the use of existing low-computation cost vegetation
override models,

2. Generating dynamically-feasible interaction tra-
jectories through the imposition of collocation con-
straints on the vehicle’s motion model, and

3. Operating in real-time to enable the maneuver of
a nonholonomic wheeled robotic platform through a
cluttered off-road environment.

This work begins with a description of the proposed
control structure in the second section, and controller sim-
ulations are shown in the third. Results from hardware
experimentation follow the simulation results, and the paper
concludes with reflections and a discussion of future work.

2. Method (Algorithm) Overview
This section begins with a description of direct colloca-

tion methods for trajectory optimization and then discusses
vegetation and vehicle modeling. The proposed trajectory
optimization control technique is then motivated from the
description and models.

2.1. Direct Trajectory Optimization Techniques
Trajectory optimization problems determine an optimal

state and control sequence that minimize an objective func-
tion (Kelly, 2017). Equation (1) shows an objective function
of the trajectory optimization problem where the boundary
term is not explicitly dependent on time

𝐽
(

𝑡0, 𝑡𝑓 , x(𝑡),u(𝑡)
)

=

𝐽𝑓
(

x(𝑡0), x(𝑡𝑓 )
)

+ ∫

𝑡𝑓

𝑡0
𝑤
(

x(𝜏),u(𝜏)
)

𝑑𝜏, (1)

and where decision variables 𝑡0, 𝑡𝑓 , x(𝑡),u(𝑡) are, in order:
the initial time, the final time, and the state and control
trajectories. Terms 𝐽𝑓 (⋅) and 𝑤(⋅) are the boundary and
integral cost terms. The objective function is then minimized
in a mathematical program

min
𝑡0, 𝑡𝑓 , x(𝑡), u(𝑡)

𝐽 (𝑡0, 𝑡𝑓 , x(𝑡),u(𝑡)), (2a)

subject to ẋ(𝑡) = f(𝑡, x(𝑡),u(𝑡)), (2b)
h(𝑡, x(𝑡),u(𝑡)) ≤ 0, (2c)
g(𝑡0, 𝑡𝑓 , x(𝑡0), x(𝑡𝑓 )) ≤ 0, (2d)

where (2b) are the system dynamics and (2c) and (2d)
represent general path and boundary constraints, respec-
tively.

Direct trajectory optimization techniques approximately
solve the mathematical program for the trajectory optimiza-
tion proposed in (2) by discretizing and transcribing the
problem into a more general nonlinear program. A standard-
form nonlinear program is

min
z

𝑅(z), (3a)

subject to 𝑐(z) = 0, (3b)
𝑑(z) ≤ 0 , (3c)

where all functions are assumed to be at least 2 smooth.
Direct collocation methods represent continuous-time tra-
jectories with a spline of 𝑁 time-parameterized polynomial
segments; and thus the methods discretize the continuous-
time trajectory via the 𝑁 + 1 knot points. To ensure that the
solution to the program posed in (2) is feasible with respect
to the system dynamics as described in (2b), an integral
form of the dynamics is approximated through numerical
quadrature. Through the use of different quadrature rules,
classically trapezoidal or Simpson quadrature, different ap-
proximating polynomials are recovered. These approximate
integrals are thus posed as collocation constraints in (3b).
Additional integral (2c) and boundary constraints (2d) are
posed as constraints in (3b) and (3c). Finally, a discrete-time
representation of the objective function in (1) must be posed
for the nonlinear program (through approximations such as
quadrature) and via an augmented state variable 𝑧 containing
all the decision variables at the knot points.

2.2. Vegetation Override Models
The vegetation override models developed by the off-

road mobility and cross-country movement communities,
including those by Blackmon and Randolph (1968) and
Mason et al. (2012), abstract complex collision interactions
into useful low-computational-cost approximations. These
approximations generally characterize the required force,
work, or velocity a vehicle needs to override a subset of
vegetation given some parameterization of the vehicle or
environment.

2.2.1. 2012 Mason Override Model
Mason et al. (2012) presents a model for vertically

embedded objects in the ground. These objects consist of
posts and small trees. Equations are introduced in Mason
et al. (2012) to capture the necessary override force for post-
like objects, which were then validated primarily through
pull tests. The model in Mason et al. (2012) is mainly char-
acterized by vehicle mass and geometry (pushbar height),
vegetation and emplacement geometry, soil parameters, and
a series of regression coefficients. Mason et al. (2012)
then relates a series of energy expenditure and traversal
velocity equations from collected data and provides a force
model. Equation 10 from Mason et al. (2012) describes the
minimum velocity at which the vehicle is required to travel
in order to override a post, 𝑣𝑜𝑣𝑒𝑟, and is given as

𝑣𝑜𝑣𝑒𝑟 =

√

2𝑘𝛼𝛾𝑑𝐷𝐿𝑡
𝑚(ℎ + 0.5 ∗ 𝐿𝑡)

, (4)

where 𝐿𝑡 is the burial depth, 𝑚 is the vehicle mass, ℎ is the
height from the ground surface at which the override force
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is applied, 𝐷 is the post diameter, 𝛾𝑑 is the dry density of
soil, and 𝛼 and 𝑘 are empirical factors derived as described
in Mason et al. (2012). As seen in (4), weather conditions
directly influence required minimum velocity for override
given that a decrease in the dry density of soil yields a lower
override velocity.

2.2.2. 1968 Blackmon Override Model
The model presented in Blackmon and Randolph (1968)

was regressed from a series of vegetation override tests of
different vegetation types in different environments. Black-
mon and Randolph (1968) provide unique regressions for
force and energy expenditure for these different vegetation
types, including: singular coniferous and hardwood trees,
arrays of multiple trees struck in unison, and “clumps” of
bamboo. From continuous measurements of pushbar force,
drivetrain metrics, distance traveled, time, measurements of
the impacted trees, and characterizations of the aftermath
of the collision, Blackmon and Randolph (1968) construct
a model primarily parameterized by the geometry of indi-
vidual or multiple trees (for example, the radius of a tree) or
the clump diameter.

In this study, the authors consider only experiments
which require the override of a single tree or post. While
Blackmon and Randolph (1968) provide additional override
models, this simplification to a single class of vegetation was
drawn from limitations in the perception of the necessary
characterizing features for arrays of trees. Thus the method-
ologies presented herein are not limited in scope to single
standing trees, aside from the limits discussed in the original
Blackmon and Randolph (1968) manuscript itself. Given
this simplification, equations B10-B12 from Blackmon and
Randolph (1968) which describe the force and work required
to override a single standing tree are of particular interest.
These equations largely take the form

𝐹ℎ = 𝐾𝑓𝑑
3
𝑠 , (5)

and

𝑊 = 𝐾𝑤𝑑
3
𝑠 , (6)

where 𝐹ℎ horizontal pushbar force, 𝑊 is the work required
to fail a single standing tree, 𝑑𝑠 is the stem diameter, and
𝐾𝑓 , 𝐾𝑤 are constants that are dependent on vehicle geome-
try (e.g. pushbar height).

Note that one advantage of Blackmon’s model over Ma-
son’s model for use onboard robotic systems is that the model
is dependent solely on a visibly measurable quantity (the
stem diameter). This single parameter dependency yields a
much lower requirement on robotic sensing capabilities and
a priori soil characterization likely at the expense of model
fidelity.

The measure of work produced from Blackmon’s models
may then be combined with additional vehicle information
(e.g., the operating mass) in order to generate a suitable 𝑣𝑜𝑣𝑒𝑟
for a sensed piece of vegetation. The equivalent relations
to determine this 𝑣𝑜𝑣𝑒𝑟 may be calculated in the manner
discussed in Mason et al. (2012). This allows for either

model to be used in the trajectory optimization techniques
discussed later in the manuscript.

2.3. Vehicle Modeling

Figure 1: The modified Polaris RZR UTV

Although the mathematical outline provided above can
be applied to multiple dynamical systems, the platform
used in this work is shown in Figure 1. The platform is a
modified Polaris RZR utility task vehicle (UTV) that can
travel up to 20 [𝑚𝑠 ] in cluttered off-road terrains. The vehicle
is ruggedized to collisions and is equipped with an onboard
sensor suite that contains monocular and stereo cameras,
as well as multiple Light Detection and Ranging (LiDAR)
sensors. A nonlinear bicycle model was used to represent
the vehicle dynamics. The vehicle state was modeled as: x =
[𝑝𝑥, 𝑝𝑦, 𝜓, 𝛿, 𝑣]. In order, the elements of this state vector are
the vehicle: x-position, y-position, heading, steering angle,
and velocity. The model of the vehicle controls include
acceleration and steering rate: u = [𝑎, �̇�]. The continuous-
time vehicle dynamics are

�̇�𝑥 = 𝑣 ∗ cos
(

𝜓 + atan
(
𝐿𝑓
𝐿 ∗ 𝛿

))

,

�̇�𝑦 = 𝑣 ∗ sin
(

𝜓 + atan
(
𝐿𝑓
𝐿 ∗ 𝛿

))

,

�̇� = 𝑣
𝐿
cos

(

atan
(
𝐿𝑓
𝐿 ∗ 𝛿

))

∗ tan(𝛿),

�̇� = �̇�,
�̇� = 𝑎,

(7)

and the parameters may be found in Table 1. The vehicle’s
total length is𝐿𝑇 , wheelbase length is𝐿, front axle to center
of mass distance is 𝐿𝑓 , front axle to nose distance is 𝐿𝑛𝑜𝑠𝑒,
lower bull-bar strut height is ℎ𝑛𝑜𝑠𝑒, width is 𝑤, and the mass
of the vehicle is 𝑚.
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Property Unit Magnitude
𝐿𝑇 [m] 3.785
𝐿 [m] 2.972
𝐿𝑓 [m] 1.412
𝐿𝑛𝑜𝑠𝑒 [m] 0.915
ℎ𝑛𝑜𝑠𝑒 [m] 0.533
𝑤 [m] 1.828
𝑚 [kg] 901.0

Table 1
Platform Parameters

2.4. Direct Collocation for Vegetation Override
One central aspect of the collision models presented

in the previous section is that each model captures a loss
of kinetic energy due to the collision corresponding to the
failing of the vegetation or post. However, the structure
of the trajectory optimization problem and the nonlinear
program in (2) and (3) require at least 2 smooth func-
tions to accurately represent the dynamics in the collocation
constraints. Thus, to incorporate the previously mentioned
vegetation models in the trajectory optimization, the impact
dynamics must be accounted for. From the formulation, the
collocation constraints are evaluated at specific collocation
points, which need not be the same as the knot points
described earlier. This realization gives rise to the idea of
introducing a pointwise-in-time discontinuity in the form of
a functional map, commonly described as a “jump” map,
between the two states which represents the collision. This
concept exists at the center of hybrid-contact representations
of collisions and multi-phase direct collocation methods, and
is discussed in more detail in Hargraves and Paris (1987) and
Kelly (2017). These approaches have not been implemented
using the aforementioned vegetation models.

To capture the effects of the collision at a knot point, a
mapping must be defined to transition the state at the time
of collision, x(𝑡𝑐𝑜𝑙), to a new post-collision state. That knot
point representing the pre-collision state, xcol = x(𝑡𝑐𝑜𝑙), is
mapped to the next knot point via the mapping

xk+1 = fcol(xk), (8)

where subscript 𝑘 is a general indexing of the knot points,
instead of via the selected quadrature rule. While the tech-
nique is compatible with the different collision models as
described in the vegetation modeling section, this work
represented the collision as a loss of velocity at the point
of collision. More specifically,

xk+1 = fcol(xk) = xk − [0; 0; 0; 0; 𝑣𝑜𝑣𝑒𝑟], (9)

where 𝑣𝑜𝑣𝑒𝑟 could be defined (for example, via Mason et al.
(2012)’s model) in (4), where the last element of xk cor-
responds to the velocity in (7). However, enforcing such a
mapping at the point of collision does not solely account
for the effects of the collision. For the simple jump map
in (9), collisions could propel the system in reverse at low
speeds, so either a guard function or a lower-bound on

the minimal allowable velocity must be enforced to ensure
compliance with physical laws. A natural requirement to
ensure the vegetation is overridden is to enforce that the
velocity reaches at least 𝑣𝑜𝑣𝑒𝑟 at the time of collision. Just as
the velocity constraint is imposed at the point of collision,
additional constraints or allowances may be associated with
the knot point xcol.

Unfortunately, specifying the time of contact or the con-
tact sequence is a non-trivial matter. For the posed collision
problem, while the time of collision is not known, the point
in space at which the contact occurs is known. Fixed time-
stepping methods that discretize the problem posed in (2)
with a constant time step are challenging to use, as specify-
ing which particular knot point (if any) will represent xcol is
equivalent to knowing the specified contact sequence at best
and may result in an unsolvable problem at worst. However,
by adding the time step used during the determination of
the collocation constraints into the decision variables and
by allowing the solver to determine a unique time step for
each segment, the knot point which specifies the collision
takes new meaning. Instead of representing a specific time
of collision, the knot point xcol can now be enforced as a
specific state at the point of collision through an equality
constraint

xcol = xobj, (10)

where xobj is a positional representation of the object in the
state space. Equation (10) is then added as a general equality
constraint in (3b). Selecting the specific index of xcol is
a method hyperparameter. Associated with this additional
time decision variable includes the need to provide bounds
on sizes of the time steps. Simple inequality bounds may be
posed as ℎ𝑙𝑜𝑤 ≤ ℎ ≤ ℎℎ𝑖𝑔ℎ and ℎ𝑙𝑜𝑤 > 0. This constraint on
the time step lower bound ensures that the solver does not
take unphysical actions.

Finally, if no feasible trajectories are found during the
solution, such as if the needed velocity to override given
a particular model was not obtainable before collision, the
platform is commanded to remain stationary or to take an
emergency avoidance action. While no uncertainty in the
position of the object was considered in this work, uncer-
tainty in the measurements of the vegetation was addressed
by taking the maximum 𝑣𝑜𝑣𝑒𝑟 as prescribed by the vegetation
model during the time the vegetation was observed.

2.5. Algorithm Overview
For a given vegetation model (such as Mason et al.’s

2012 post-override model), a set of vehicle dynamics, and
the interaction model capturing the “jump map” in the
prior section, an operational logic can be implemented on
a robotic platform to override vegetation-like objects in the
environment. The approach is outlined in Figure 2. Note that
this approach assumes that any vegetation that is considered
for override may be overridden if the override velocity can
be reached from the initial state and given the dynamics (2b).

This logic is demonstrated in an example case motivated
by the presented experiments. Given the vehicle’s starting
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location (position “A” in Figure 2), a target (goal) location
(position “B” in Figure 2) and a single intervening piece
of vegetation (located at 𝑥𝑡 in Figure 2), the vehicle com-
putes the override velocity (𝑣𝑜𝑣𝑒𝑟) from the selected override
model. Different characteristics of the observed piece of
vegetation may imply different override velocities are re-
quired at the point of collision (xcol). For the example figure,
assume that the vegetation located at 𝑥𝑡 has an override ve-
locity that scales with trunk size. For the given trunk size, the
required override velocity is 𝑣2, outlined in purple. In order
to be successfully traversed, the vehicle must reach a velocity
of at least 𝑣2 at the point of collision. For vegetation with
smaller trunk sizes (for example, vegetation that requires
an override velocity 𝑣1 corresponding to the green line), a
smaller velocity may be achievable given the initial velocity
of the vehicle. For vegetation that requires a large override
velocity, the required velocity (𝑣3 > 𝑣𝑐𝑜𝑙, in red) may not
be overridden safely as the required velocity can never be
reached. The vehicle then executes the corresponding action
set determined by the trajectory optimization technique that
corresponds to the velocity profile that achieves a velocity
equal to or higher than the override velocity (𝑣2 in this
example instance). In the example, either velocity trajectory
that takes a velocity higher than the override velocity is
thus valid, and a further selection of which velocity is taken
depends on other design choices. For example. an emphasis
for an added margin of safety may prefer the velocity tra-
jectory corresponding to 𝑣𝑐𝑜𝑙 while a preferred minimum-
kinetic-energy approach may take the velocity trajectory
corresponding to 𝑣2. In this work, we select the trajectory
that minimizes the point-wise 𝓁2-distance evaluated at the
knot points between a reference velocity (nominal travel
speed) and the trajectory.

Figure 2: Control logic diagram of a vehicle performing a
vegetation override in the presented control framework

3. Simulated Vegetation Override
Before running on the vehicle hardware, a series of tests

were conducted in simulation. For all simulation tests, the
Mason et al. (2012) model was utilized by modifying only
the vehicle and post parameters (𝐿𝑡, 𝑚, ℎ,𝐷).

An example override for a 31.75 [mm] post that is
embedded 0.3048 [m] into the ground is shown in Figure 3.

The post is placed 20 [m] in front of the robot in the x-
direction. In the figure, the top plot represents distance from
the goal and the bottom represents the simulated veloc-
ity. Of particular interest in this simulation is the collision
that occurs at the 20 [m] mark, where the velocity drops
substantially due to the collision with the simulated post.
In the velocity graph included in Figure 3, this drop in
velocity is labeled 𝑣𝑜𝑣𝑒𝑟. To improve the times of solving the
trajectory optimization problem, the problem was initialized
by dissecting the trajectory into 𝑚 segments, where 𝑚 is the
number of expected collisions plus one. For a scenario with a
singular object that must be overridden, such as in Figure 3,
the entire trajectory that is generated is coupled together at
the collision points. This is shown by the the two colored
areas in Figure 3. The bifurcation of the trajectory requires
that an additional boundary be generated for each section,
For the presented scenario, the initial candidate solution
was then constructed by linearly interpolating between the
start position and xobj, and then between xobj and the end
position. While additional optimization could be performed,
for the problems considered in this work, the initialization
dropped the number of solver iterations by around a third.
Note the one exception to this statement is in the initializa-
tion of the control trajectory, in which the initialization held
constant values.

Figure 3: Simulated vegetation override for 31.75 [mm] post.
The controller achieves an actual velocity (green) above the
required threshold.
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4. Vegetation Override Hardware Results
Three hardware results are presented in this section. The

first two results use post override models from Mason et al.
(2012) and the third result uses the longitudinal override
model for a single standing tree described in Blackmon
and Randolph (1968). In the experiments, the vehicle was
commanded to travel at a nominal speed of 5 [m/s] for the
first two experiments and 3 [m/s] in the final experiment.
A model predictive controller, similar to the unconstrained
version of the work provided in Jianyu et al. (2017), was
implemented as a tracking controller. The results provided
in Figure 4, Figure 5, and Figure 6 reflect this tracking
controller following the trajectory as determined by the
trajectory optimization controller.

The reported velocity for each run was calculated using
a featured-based Simultaneous Localization and Mapping
(SLAM) methodology known as “Super Odometry” (Zhao
et al., 2021). Super Odometry fuses multiple sensing modali-
ties, including LiDAR, Inertial Measurement Unit(s) (IMU),
and Global Navigation Satellite System (GNSS) to simulta-
neously provide a register pointcloud map of the environ-
ment and an estimate of the system odometry. An XSens
MTI-630 AHRS IMU (“XSens”, one onboard) and Carnegie
Robotics Duro GNSS (“Duro”, one onboard) were fused in
the SLAM setup to generate a state estimate with a position
accuracy greater than 0.4 [m] and a velocity accuracy greater
than 0.08 [m/s]. While operations in Experiment 1 and
Experiment 2 were in environments where GPS could suffi-
ciently localize the robotic system, in regions with heavier
canopy cover such as in Experiment 3, localization from
GPS data alone increasingly difficult. However, the large
number of unique environmental features (e.g. tree trunks)
captured by the onboard LiDAR provided sufficient envi-
ronmental characterization to localize the robotic system.
Initial concerns of matched features existing primarily on
the overridden object proved to be unfounded in sufficiently
dense forest environments.

4.1. Experiment 1 - Straight Line Test
The first experiment that was conducted on hardware was

a straight-line test. The object that the platform collided with
was a 31.75 [mm] pine dowel rod that stood 0.914 [m] above
the ground and was embedded around 0.305 [m] below the
ground. The soil surrounding the dowel rod was compacted
by hand. It had not rained for more than a week, and soil
conditions were dry, even at a depth of 0.305 [m]. See
Mason et al. (2012) for further discussion on the influence of
weather conditions on required minimum override velocity.
The minimum required override velocity computed using
Mason et al.’s 2012 model was 2.7118 [m/s]. The post
was placed around 11.70 [m] from the front of the robotic
platform. The red arrow in Figure 4 marks the position of the
object as seen by the robotic platform’s perception system. In
Figure 4, the vehicle began its trajectory at viewpoint zero.
GPS had the vehicle localized at the centroid of the blue
circle in Figure 4 at the time of collision. The vehicle’s end
goal is depicted as a red square.

In order to constrain the platform into overriding the
vegetation, keep-out zones were enforced around the vehicle.
These zones are all areas shown in bright pink in Figure 4.
The gray areas in Figure 4 indicate all the surrounding
objects that are above a height limit of 0.5 [m]. The planned
vehicle trajectory is shown in green. Platform viewpoints
are provided in Figure 4, which are captured along the
executed trajectory. A subset of key viewpoints correspond
to the numbers located on the obstacle and collision map
subfigure in Figure 4. Note that the vegetation in each photo
is highlighted with a bounding box for better visibility of the
extremities of the vegetation.

The vehicle reached a speed greater than the necessary
threshold in order to impact the vegetation. The collision
with the pine dowel rod occurred at around 4.5 [m/s]. The
registered collision time was earlier than expected, but this
is likely due to the fact that the point of time of collision is
calculated when the vehicle first makes contact with the veg-
etation and the vehicle models used in the collision planning
did not include the length of the nose of the vehicle. The
vehicle suffered no damage during the test, but the post was
almost completely failed. After collision, the post remained
at an angle, with the end of the post that was suspended in
mid-air sitting around 0.20 [m] over the ground surface. The
post had displaced some soil, as evident in the post-collision
subfigure in Figure 4. While the soils were compacted by
the experimenters before the tests, this displaced soil may
be evident of a lack of strong compaction at the surface. The
post failed roughly 0.271 [m] from its bottom-most point, a
little below the ground plane.

4.2. Experiment 2 - Post Override Test
The second experiment used the model from Mason

et al. (2012) to represent the post for override. This post is
25.4 [mm] in diameter, stands 0.914 [m] above the ground,
and is embedded around 0.305 [m] below the ground. The
parameterization of the soil was assumed consistent with the
results found in Mason et al. (2012). This yielded an override
minimum velocity of 2.4255 [m/s]. The post’s position is
marked with indicator “B” in Figure 5 Additionally, the
electrical pole in Figure 5 that may be seen in viewpoint zero
is indicated with an “A” in the collision map for localization.
The vehicle began its trajectory at viewpoint zero. GPS had
the vehicle localized at the centroid of the blue circle in
Figure 5 at the time of collision.

The vehicle reached the target speed and x-coordinate
position at the correct collision time. Again, note the vehi-
cle’s nose is making contact with the pole at the time of the
collision. Another thing to note is vehicle did strike the post
on the passenger-side of the front bull-bar. This is a near-
head-on collision with the post, but the alignment was meant
to be towards the center of the bull-bar not the side.

After the collision, the post was completely failed by the
platform. Additionally, the post had been slightly pulled out
of the ground by around 50 [mm]. Figure 5 contains an image
of the failed post. As in Experiment 1, the platform was not
harmed.
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Figure 4: The first hardware experiment: a straight line trajectory through an embedded 31.75 [mm] post.

Figure 5: The second hardware experiment: a turning trajectory through an embedded 25.4 [mm] post.

4.3. Experiment 3 - Small Tree Override Test
The final experiment used a simplified model from

Blackmon and Randolph (1968) to compute the required
override velocity for the small piece of vegetation (tree).
In Blackmon’s model, the expression for required work
needed to fell a single standing tree relies on the diameter of
the stem. This information, combined with vehicle inertial
information, may then be used to calculate an override
velocity in the manner presented in Mason et al. (2012).
As the tree does not maintain a uniform radius, the average
width of the tree at the point of impact (81.8 [mm]) was used

as an approximation. This measurement yielded a minimum
override velocity of 0.758 [m/s]. The tree’s position is
approximately at the centroid of the yellow box in Figure 6.
The vehicle began its trajectory at viewpoint zero and GPS
had the vehicle located within the blue circle at the time of
collision.

The vehicle reached the target speed and x-coordinate
position slightly before the collision time (0.48 [sec]) which
was likely due to the poor velocity tracking exhibited by
the longitudinal controller at times 6-10 [sec]. At around
12 [sec], the vehicle’s nose made contact with the stem of
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Figure 6: The third hardware experiment: a straight line trajectory through an embedded 81.8 [mm] tree.

the tree, yielding an immediate slowdown that is reflected
in the vehicle’s reported velocity. The reported velocity loss
from Super Odometry was 0.732 [m/s], which is lower than
the expected loss of 0.758 [m/s]. Expectantly, integrating the
IMU and GNSS output also directly reflects this slowdown
in velocity. After colliding with the tree, the vehicle contin-
ued to roll until it came to a complete stop.

During the point of collision, the tree was overridden
as shown in the point-of-view camera angles in Figure 6.
However, after the vehicle traversed over the tree, the root
structure of the tree returned it to an upright position. The fi-
nal resting position and orientation of the tree after collision
is shown in Figure 7.

4.4. Discussion
The approach presented in this manuscript utilizes ex-

isting low-computation cost collision models to capture the
effect of interactions with vegetative objects in the envi-
ronment and design a trajectory capable of overriding that
vegetation. The approach leverages the robotic platform’s
onboard perception system to estimate the parameters of
the vegetation models (e.g., tree diameter), which is then
used to fit the collision model. While there is inherent
uncertainty in the measurement made by the onboard sensor
suite, a conservative approximation (e.g., taking the largest-
observed diameter in a time window) is utilized in this work
to estimate the parameters of the vegetation model. Such
approximations could lead to overly conservative behaviors
when overriding vegetation of significant size but allow for
the system to model vegetation interactions solely through
its onboard sensors. The generated trajectory captured the
environmental interaction by modeling the expected loss of
velocity experienced by the vehicle due to the collision with-
out requiring expense-to-evaluate simulations. This allowed

Figure 7: A final location and orientation of the tree which
participated in Experiment 3.

the vehicle to decide in real-time whether to override post-
like environment objects and how to maneuver the wheeled
robotic platform through a cluttered off-road environment.

While the hardware results are expected to show losses
in kinetic energy due to the collision, surprisingly, no large
loss of kinetic energy is experienced during the collision
with posts. While the vehicle engine was in use during
the impacts presented in this work and the bull-bar has a
compliant mount, the loss of energy associated with both
experiments was expected to have resulted in a larger drop in
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the kinetic energy than was observed. The only experiment
that reflects an observable drop in kinetic energy results in
an equivalent loss of velocity of 0.732 [m/s] on collision,
which is lower than the predicted value of 0.758 [m/s]. This
final experiment reflects that a loss of kinetic energy could
be experienced during the interaction with the post and that
a dynamically-feasible interaction trajectory should account
for this loss to more accurately represent the real-world
effects of the vegetation override interaction chosen by the
robotic system.

5. Conclusions
The off-road operation of robotic systems continues to be

a challenging area. It is not only clear from robotic-operated
off-road vehicles, but also from human-operated off-road
vehicles, that the unstructured nature of the terrain and any
associated uncertainty yields a problem that is drastically
different from on-road or trail driving. The presented work
advances the state-of-the-art in off-road navigation by ad-
dressing vegetation interactions through the use of online
hybrid dynamic optimization-based vehicle controllers with
classical vegetation override models. This understudied vital
area of off-road driving has a wide range of applications,
and many areas of improvement to bring robotic platform
operations more inline with expert human operators.

This work presents a trajectory optimization method that
combines hybrid-dynamics, a free-time formulation, and
existing parameterized vegetation models from the off-road
mobility and cross-country movement literature in order
to override environmental vegetation. The method works
by enforcing minimum velocity constraints such that the
collisions with the vegetation occur at a minimum override
speed. These collisions occur at a designer-specified index
of collision, but the designer need not select the time of
collision, as that is handled directly by the solver.

While the collisions modeled in this work occur at a
unique instance in time, future extensions should also look
into addressing extended collisions with distributed objects,
such as dense foliage. General improvements to the algo-
rithm include changing the vehicle model to capture the
frontal geometry, better representations of vegetative objects
(the representation of a bush-like object as a singular point
such as the center of a tree showed difficulty in determining
collision time). Furthermore, exploring the implications of
the designer-selected collision index hyperparameter and
developing automated approaches to how best to select that
index should be made a priority. Work in adaptive gridding
or meshing could assist in selecting the collision index.

In particular, we postulate that extending the study pre-
sented in this manuscript to directly account for environ-
mental aleatoric and epistemic uncertainty could provide
a means for safer off-road behaviors. Of larger concern is
that the provided vegetation models are themselves approx-
imations of the vehicle-vegetation interaction, with factors
that can be non-observable (e.g. root depth) or difficult
to monitor (e.g. soil moisture) in real time. The author’s

believe that incorporating information-seeking behaviors to
investigate model quality or including a measure of vehicle-
vegetation interaction model confidence with respect to pre-
viously overridden vegetation should be a priority for the
wider community.

Finally, we implore the off-road mobility community to
continue to construct and improve on low-computational
cost vegetation interaction models and datasets for use
by robotic systems. The algorithm presented in this pa-
per takes advantage of low-computational cost representa-
tions of vegetation-interactions to perform overrides, but
its extensibility to other types of vegetative and commonly
encountered non-vegetative objects is dependent on these
models. As an alternative to developing explicit vegetation-
interaction models utilized in this paper, the implicit models
developed in learning-based approaches continue to show
powerful advances in off-road vehicle control. However,
many of these approaches are limited by availability of high-
fidelity off-road interaction data or representative simulated
data.
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