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Intelligent Players in a Fictitious Play Framework

Bhaskar Vundurthy
Vijay Gupta

Abstract—Fictitious play is a popular learning algorithm in
which players that utilize the history of actions played by the play-
ers and the knowledge of their own payoff matrix can converge
to the Nash equilibrium under certain conditions on the game. We
consider the presence of an intelligent player that has access to the
entire payoff matrix for the game. We show that by not conforming
to fictitious play, such a player can achieve a better payoff than
the one at the Nash Equilibrium. This result can be viewed both
as a fragility of the fictitious play algorithm to a strategic intelli-
gent player and an indication that players should not throw away
additional information they may have, as suggested by classical
fictitious play.

Index Terms—Fragility of algorithms, learning in games, multi-
agent systems.

|. INTRODUCTION

Learning algorithms (see, e.g., [1], [2], [3]) can be viewed as a
mechanism for the agents to discover their solution strategies under
a solution concept, such as a Nash equilibrium. In this article, we
specifically focus on fictitious play (FP) [4] as the learning algorithm
used by players. In FP, each player builds a model of what the strategy
of the other players is based on the historical actions taken by them
and plays a best response to it. Analyzing the class of games for which
FP and its variants converge to a Nash equilibrium continues to be a
direction of active research.

Two features of this algorithm are worth pointing out. First, almost
all convergence results for the FP algorithm assume that all players are
following this algorithm. For a setting of games among strategic players,
this seems a strong assumption requiring some form of cooperation
among otherwise noncooperative players. For example, in a two-player
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game, a strategic player can force her opponent into a Stackelberg
equilibrium with herself as the leader (and gain in payoff) by deviating
from the trajectory suggested by FP. The first question of interest to
us is to identify the optimal payoff that a strategic player can achieve
by exploiting the fact that all the other players follow FP. We show
that a payoft higher than the one in Stackelberg equilibrium is, indeed,
achievable. The second feature of FP is that the players do not use any
further information about the game other than their own utility payoffs
for various strategy combinations. This is desirable in that players that
possess limited and distributed information about the game can still
discover the solution. However, it does raise the question if a player
with more knowledge can obtain a better payoff for herself (or other
players) than the one at the Nash equilibrium. Once again, we show
that a player that knows the entire payoff matrix for all the players can,
indeed, improve its own payoff and in some settings, the payoffs of all
players by using that information.

We also note that the convergence results on the classes of games
for which FP is known to converge are much larger when only two
players are involved. When more than two players are present, it has
been shown that the Nash equilibrium need not possess an absorption
property (where a strategy profile leaves no incentive for a player to
switch its action in future time instants) that is useful to guarantee
convergence [5]. Thus, the results for convergence of the standard FP
algorithm in an n-player game are weaker. As a side contribution, we
define a notion of nondegeneracy in n-player finite games and show that
the presence of an ordinal potential function assures the convergence
of FP to the respective Nash equilibrium in such games.

We consider the interaction between n + 1 players that play a matrix
stage game repeatedly. For two-player games, we do not assume any
particular structure on the game, whereas for N-player games, we
restrict our attention to a class of games defined in Definition 2. The
players are classified based on available information. The first class
consists of a single intelligent player (IP) who is aware of the complete
game. All the remaining players, referred to as opponents, belong to the
second class and are limited to the knowledge of their own payoffs for
different strategy vectors. When all players employ FP, under suitable
conditions, the players converge to the Nash equilibrium. However, the
IP need not adhere to FP. We ask the question: Can the IP obtain a higher
than Nash equilibrium payoff by deviating from FP? Furthermore, if
there exists such a strategy profile, how does the IP enforce it when
the opponents are implementing FP? Our key contributions are as
follows.

1) We identify strategies that can deliver an expected payoff greater
than the Nash and the Stackelberg equilibrium payoff for the IP.
For the case when there are two players in the game, the strategies
that we identify are optimal for the IP. For the general case of n + 1
players, we provide a more tractable class of strategies that may
be suboptimal, yet can provide an expected payoff greater than the
Nash and the Stackelberg payoff for the IP.

2) We provide a linear programming formulation that determines the
strategy identified above.
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3) We determine a pure action trajectory for the IP that reaches the
desired mixed strategy probabilities while keeping the opponents
in their FP determined strategies.

Ever since its introduction [4], FP has been a popular learning
algorithm in game theory [6], [7]. The class of games for which
the algorithm converges to the Nash equilibrium has been gradually
expanded (see, e.g., [8], [9], [10], [11]), although it is known that the
convergence does not hold in general [12]. We focus on the variant
known as alternating FP, which was actually the algorithm originally
proposed by Brown [4] and Berger [13]. For two-player games, this
algorithm converges to the pure Nash equilibrium if the game belongs to
a special class, namely that of nondegenerate ordinal potential games.
For games with n players, in [14], a lack of absorption property for
standard FP was illustrated even if the game belongs to such a special
class. As part of our proofs, we show that this absorption property can
be revived by imposing an additional constraint. However, almost all
the existing convergence proofs in the literature assume that all players
update their strategies according to FP. The payoffs that a strategic
player may be able to derive by deviating from the algorithm (even as
the other players continue to play FP) are largely unexplored. In our
formulation, the IP is assumed to possess the knowledge of the payoff
matrices of all the players while the other players know (or use) only
their own payoffs for various strategy combinations in keeping with
FP. Players having access to dissimilar information about the game is,
of course, widely studied (e.g., as games of incomplete information, in
the form of incredible threats in dynamic games, or through models of
bounded rationality [15]). However, less work has considered it in the
context of learning in games. One relevant field that has studied one
rational patient player playing against a boundedly rational opponent
that employs myopic best response is Market Dominance and the
Chain-Store Game [16] where it is known that encouraging a reputation
for the rational player can deliver a higher payoff over time.

If the strategic player announces her commitment to a Stackelberg
strategy where she is the leader, she can obtain the corresponding payoff
both in reputation-based setups and if the opponent is implementing
FP. Along this theme, Fudenberg and Kreps[17] identify the conditions
under which the results from sequential gameplay extend to their simul-
taneous counterpart. These results are improved in [18], which further
accounts for the possibility that distinct strategies on the long-run
player could be observationally equivalent. Fudenberg and Levine [19]
conclude that if public commitments are allowed, then the best that
a long-run strategic player could do is to publicly commit to a pure
Stackelberg strategy while the opponents take the role of Stackelberg
followers. Freund et al. [20] extend the discussion to contract games
while Conitzer and Sandholm [21] show that the Stackelberg strategy
that the strategic player announces to the opponents may be mixed. In
contrast to this stream of work, we do not allow communication among
the players, so that the IP can no longer commit to or announce her
strategy publicly. In this case, we show that higher payoffs than the
Stackelberg solution are possible for the IP. The fact that the IP does
not communicate to the other players or change their utility functions
also makes our work different from incentive design, nudging, and
information design in games [22], [23], [24].

Il. PROBLEM DESCRIPTION

Consider a finite game G = (n+ 1,Y;,U;) with n + 1 players,
where each player P; € P := {Po, P1,...,P,} has an action set Y;
and a utility function U; : Y — R where Y :=Y¥p x Y} x--- X Y,,.
Furthermore, for a given action profile y = (yo, y1,-..,Yn) € Y, let
Yi = (Yo,---,Yi—1,Yi+1,---,Yn) denote a profile of player actions
other than player P;. With a slight abuse of notation, a profile y

of actions can be written as (y;,y_;) and the corresponding utilities
U (y) as U;(yi,y—;). We assume that the game G is played at times
t=1,2,3,.... A mixed strategy z; is a vector of probabilities for all
actions in the set Y;. Denote by z_; the profile of mixed strategies
for all players other than P; and the expected utility for P; playing a
pure action y; and the rest of the players playing z_; by U;(y;,Z_;).
When a game is played repeatedly, the mixed strategy vector of player
P; can change with time and we denote the vector at time ¢ by Z;(t).
The players are categorized based on their information structure within
the repeated game. In the first category, players are aware of only
their own payoffs and the actions of all the players as realized in
all stage games till that time. We refer to them as the opponents
and denote them using P;. Without loss of generality, we assume
that P; € P’ := {P1,Pa,...,Pn}. We assume that the opponents
adhere to alternating FP (see Definition 1), which offers convergence
guarantees in spite of the limited information availability at the players.
Player P, falls in the second category by dint of her knowledge of the
entire game G, which includes the payoff matrix for all the players, as
well as her knowledge of her own payoff and actions of all the players
as realized in all stage games till that time. We consider Py to be the
intelligent player and refer to it as the IP. The IP may deviate from FP to
obtain a higher payoff. Every stage game is played as follows. At every
stage ¢, the IP begins with its action, say yo € Yy. The best response of
all the remaining players then follows in the order of their indices, as
specified in Definition 1. Once all players have played at stage ¢, the
payoff for all the players is realized after identifying the actions played
by all the players at time ¢. The game then moves on to stage ¢ + 1.

Definition 1: For a game G = (n + 1,Y;,U;), an opponent P; €
‘P’ adheres to alternating FP (referred as FP in this article) if at every
stage game at time ¢, P; plays its best response BR; () to the empirical
distribution of actions of players {Py, P1, ..., P;_1} until time ¢ and
that of players {P;11,...,P,} until time (¢ — 1) as given by

BR;(z_;(t)) := argmax U, (y;,z_;(t)) (1)

Yi€Y;

where %,Z(t) = {%0(t)7 ey %ifl(t% %i+1(t — 1)7 ce 7%n(t — 1)} is
the estimate of the mixed strategy profile of all the other players
as calculated using the empirical frequency of the actions played by
players {Po, P1,...,P;_1} until time ¢ and players {Pj11,..., Py}
until time (¢ — 1). |

Note that how the IP should choose its strategy has not been specified.
If she chooses FP as well, for many classes of games G, the players
will converge to the Nash equilibrium strategies. However, the IP can
potentially obtain a better payoff by deviating from FP. The problem we
are interested in is to identify the optimal strategy for the IP to obtain
the best payoff when the opponents continue to play FP. It is not clear
a priori, whether the optimal strategy for the IP will be a mixed or a
pure strategy, and whether the game will converge to an equilibrium
or not when the IP deviates from FP. If the optimal strategy for the
IP is a mixed strategy, then it is not sufficient to characterize merely
the probabilities of various actions being taken, since there may exist
multiple strategy trajectories that obey these probabilities but do not
deliver the expected payoff. Thus, we are also interested in identifying
an action sequence for the IP that realizes the desired strategy profile
for all the players when the opponents play FP.

Ill. Two-PLAYER GAMES

The analysis of the convergence of FP is much simpler and more
advanced in two-player games. We begin with that special case as well
and show that an optimal strategy for the IP can be calculated using a
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linear program (LP) without the need to assume any additional structure
on the game G.

Let the action set Y of the IP be the set Yy = {yd,v3,...,y5}
and the set Y; for the opponent be the set Y, = {yi,y?,...,y"}. We
can then denote the payoffs of the IP (resp. the opponent) through an
n x m matrix A (resp. B) such that the (7, j)th element a;; of A (resp.
b;; of B) denotes the payoff of the IP (resp. the opponent) when the IP
chooses action y§ and the opponent chooses action y{. Consequently,
the best response for the IP corresponding to the opponent playing a
mixed strategy z; is given by argmax, (Az, ); and the best response for
the opponent corresponding to the IP playing a mixed strategy z is
given by argmax ; (BZo),

FP by both players in a two-player game is known to converge to
a Nash equilibrium in some specific games, for instance, in 2 x M
games with generic payoffs. We emphasize that we do not impose such
restrictions on the payoffs of the players. However, we assume that the
payoffs of the opponent are indexed such that a lower index indicates a
higher payoff for the IP, and to break ties in FP, the opponent employs
a lower index when indifferent between two or more pure actions. Our
first result notes that the optimal strategy for the IP restricts the opponent
to play a pure strategy in the steady state.

Theorem 1: The optimal strategy for the /P is such that the opponent
plays a single action in the steady state.

Proof: At every time instant, the opponent employing FP has a
unique pure strategy best response for any trajectory history of the
IP. Thus, any switching between opponent’s pure strategies that deliver
unequal payoffs to the IP would reduce the expected payoff. To maxi-
mize its expected payoff, the IP thus restricts the opponent to the pure
strategy that delivers her highest payoff. |

We can then characterize the optimal strategy of the IP.

Theorem 2: Let Zéj ) be a (possibly mixed) strategy for the /P such
that the corresponding best response for the opponent is the pure
strategy y{ where j € {1,2,...,m}. The strategy profile (z}, y{*)
that maximizes the expected payoft of the /P is given by

J* = argmax <r11(§;>>((2(<)j) -Ay{)) Vie{l,2,...,m}

50
J )

75 = max(z§) - Ay]). @)

5
Z0

Proof: By Theorem 1, the IP can restrict her search over strategies
that lead to best responses for the opponent that are pure strategies
in the steady state. In other words, the only strategies of interest are
the nondominated pure strategies of the opponent. Now for every such
strategy y{, there exist (possibly multiple) mixed strategies iéj ) such
that the opponent’s best response to the mixed strategy via FP is y{ and
the corresponding payoff for the IP is given by Zéj ). Ay{. The highest
payoff for the IP can then be computed by maximizing this payoff over
the mixed strategy space, followed by identifying the pure action of the
opponent with the highest such payoff, as given by (2). |

Remark 1: Theorem 2 can be restated as m linear programming
problems with constraints arising from restricting the response of the
opponent to one of the pure actions while the maximization comes from
the expected payoff of the /P. |

Example 1: A finite two-player game with two pure actions for the
IP (the row player) and three pure actions for the opponent (the column
player) is presented via Table I, where the best responses for each
player are marked in bold. When both players employ FP, the game
converges to the pure Nash equilibrium (U, L), where the IP obtains
an expected payoft of 6. To turn the game into a Stackelberg game, the
IP can play D repeatedly and shift the game to (D, R), thus obtaining

TABLE |
FINITE TWO-PLAYER GAME CONSIDERED IN EXAMPLE 1

2 (Opponent)

L B R
1 ap) (6,10) | (10,7) | (8.,2)
(5,1 | A58) | (7.9

a payoff of 7. Theorem 2 increases this payoff further by posing three
linear programming problems corresponding to the three pure actions
of the opponent. It turns out that a mixed strategy of ( % , % )T restricts the
opponent to the pure action B and delivers an expected payoft of 14.17,
greater than prior solutions and is also the highest possible payoft. The
conditions from linear programming problem require the /P to maintain
the probabilities of its pure action U in the range [%, 1—70] in order to
restrict the opponent to B. A strategy trajectory that achieves this is

(U,D,D,D,D,D). ]

IV. GAMES WITH MORE THAN TWO PLAYERS

While the above analysis can be generalized to games with more
than two players, the solution quickly becomes computationally com-
plicated. Furthermore, the analysis of the convergence of FP in games
with more than two players is more limited than in those with two
players even if no IP is present. We now make some assumptions on
the game structure and present a suboptimal but computationally more
tractable solution.

A. Assumptions on the Game

Define a subgame G(¥0) that restricts the IP to one of its pure
actions yo as follows (note that the subscript ¢ is reserved for all
players in game G while j is reserved for opponents in subgame G (¥0)
ie, P, €P and P; € P): GWo) = (n,Yj,U;yO))where U;yw =
U;(yo,y;,y-5) suchthatj € {1,...,n},y; € Y;,y_; € Xs2(0,5}Ys.
We assume that the game G is a nondegenerate ordinal potential
game with respect to the IP as defined ahead. Recall that G is an
ordinal potential game if there is a function ® : Y — R such that
Vi, Yy_; € Yo, Yyl yf € Yi, we have U; (v}, y—i) — Ui(y},y—:i) > 0
= Oi(y;y-i) — Pi(yi,y-s) > 0.

Definition 2: A game G = (n+ 1,Y;,U;) is considered to be
degenerate with respect to the /P, if for some yq € Y, there exists
Y-0,Y"o € xYj such that U;(yo,y-0) = U; (Y0, ¥ o), if y-0 # yo-
Otherwise, the game is said to be nondegenerate with respect to the
IP. Furthermore, it is an ordinal potential game with respect to the
IP if every subgame G(¥0) = (n, Y, U;yo)), Yo € Yy, is an ordinal
potential game with a unique pure Nash equilibrium. |

Note that we restrict our discussion to nondegenerate and ordinal
potential games where the constraints are applicable only to the sub-
games G(¥0) and not to G itself. Consequently, the discussion ahead
relates to a larger class of games. We first show a convergence result
for FP in this larger class of games.

Theorem 3: In every subgame G(¥0) of a finite nondegenerate
ordinal potential game G with respect to the IP, FP by the opponents
converges into a pure Nash equilibrium of the game in a finite number
of time steps.

Proof: In a subgame with finite strategy profiles, there cannot be
an infinite sequence of improvement steps without resorting to cycles.
Since such cycles are absent in ordinal potential subgames, any im-
provement path converges to a strategy profile. In a nondegenerate
subgame, such a strategy profile does not have any improvement steps
leading out of it, making it the pure Nash equilibrium. As a result, all
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improvement paths converge to a pure Nash equilibrium in finite time.
[ |

B. Determination of the Best Convergence-Based Mixed
Strategy for the IP

In order to determine a strategy that increases IPs payoff, one possi-
bility is to consider the payoffs in the subgames G (¥0) corresponding
to all its pure actions and select the one that yields the best payoff.
However, the IP can in fact do better by switching between this action
and others in a manner that increases her payoff, without allowing the
opponents to switch from the pure Nash equilibrium of the subgame.
We may term such a strategy for the IP as a convergence-based mixed
strategy, which is a mixed strategy specific to a pure action ¥, such that
the IP switches between its pure actions while restricting the opponents
to the pure Nash equilibrium of the subgame G(¥0). By assumption,
the opponents switch from one action to another only if the expected
payoff for the former is strictly lower than the latter. Let z; denote IPs
convergence-based mixed strategy such that the best response for all
the opponents is (yo, yi Yt ) in the subgame G(¥0), Let zk denote the
probability corresponding to apure action k£ € Y;. The expected payoff
for any player P; € P is given by

U(yo) (2o, y] 7

-y

keYp

(k) 3)

The following result determines the subgame G (¥6) and its corre-
sponding convergence-based mixed strategy zg.

Theorem 4: Let (yo,y},y" ;) be the strategy profile corresponding
to the pure Nash equilibrium for the subgame G o), where yo € Y,
and j € {1,2,...,n}. Let Uéy‘))(zo, Y5, y*;) be the expected payoff
for IP for its mixed strategy zo such that the other players are restricted
to the pure Nash equilibrium of the subgame G(¥0), as given by (3).
The strategy profile (z}), Y5y ) that maximizes the expected payoff
of the IP is

yy = argmax(rr;%x Uéy")(zo, Y5, y5))
Yo

*

% (y3) -
2z}, = argmax U,""’ (zo, Y5 y;)- S

zo

Proof: From Theorem 3, it is adequate to consider the Nash equi-
libria of the opponents in lieu of the remaining strategy profiles since
FP always converges to the pure Nash equilibria in the class of games
we consider. For every subgame G(¥0) and the corresponding pure
Nash equilibrium (yo, v}, y* j), there exists a mixed strategy profile
zo for the IP whose best response for all the opponents is still the
Nash equilibrium profile (yo, yiyx ) Thus, the maximum expected
payoff for the IP can be computed by first maximizing such payoff
U™ (20, y7, y7,), within a subgame G(¥0) followed by identifying
the subgame G(¥) with the highest maximum expected payoff, as
given by (4). The corresponding convergence-based mixed strategy
z( can be obtained by using the subgame G @) and maximizing the
expectation from (3). |

‘We now present a result that indicates a procedure to compute z{; via
an LP.

Corollary 1: The computation of each z, via Theorem 4 for a pure
action g of the IP can be solved using an LP. z} can be calculated by
solving a number of such problems equal to the cardinality of the set Y

TABLE Il
FINITE THREE-PLAYER GAME G WITH THREE SUBGAMES
P2
L N R
v | L1 | 3639 | (6825
Pr M| 3272 | 4483 | (3,79 4
D | 3357 | 256)8 | (494)6
Po < IP (yo = A)
L N R
U | 2423 | 433)4 | (7695
Pi1 M| @242 | G311 | 3856
D 3,789 | 2578 | (49,6)7
Po < IP (yo = B)
L N R
U 2,1,)1 | (59.2)8 | (5639
Pir M| 4272 | 3897 | 4586
D | 3343 | 2,754 | 346)5

Po < IP (yo = C)

and then by choosing the subgame with the highest maximum expected
payoft.

Proof: The proof follows from the structure of (4) where zy is
obtained by maximizing the cost function U, (y°>(z0,yj, ;). For
brevity, denote zo by a vector q = (q1, 2, - - -, qvy))" where [Yol is
cardinality of the set Yj. Let the strategy profile (k,y},y”;) be the
Nash equilibrium for opponents in the subgame G (¥). Then, the linear
programming problem for a pure action k£ € Y; can be stated as

ma; Uo(k, v, y*
qxzq’“ o(k,y5,y75)

keYo
sty a Uik, v, 05) = U (k,y5,y%5)] <0

keYy
Yy, €Y,y #yjandVj € {1,2,...,n}

keYy

Various constraints for the linear programming problem arise from
restricting the opponents’ best responses to the pure Nash equilibrium
of the subgame G o), The additional maximization in (4) then leads
to the identification of the subgame G(¥5) that delivers the maximum
expected payoff. |

Example 2: A finite nondegenerate ordinal potential three-player
game with respect to the IP (Py) is presented via Table II . Each player
has three strategies and each matrix represents the game with respect to
one of the strategies of the IP. The row player is P; while the column
player is Ps.

In this example, there are three subgames G4, G(5) and G(©),
Best responses of each opponent against pure actions of the remaining
players, as given by (1) are marked in bold. Table II also presents
the potentials (marked in green) of various strategy profiles within
their respective subgames [10]. Naturally, the profile with the highest
potential is the unique pure Nash equilibrium within that subgame. Each
cell depicts the playoffs for the three players for that strategy profile.
When all the players (including the /P) employ FP, the game converges
to (B, D, L) and the IP obtains an expected payoff of 3 (= U; (y)). To
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increase its payoff, the /P utilizes Corollary 1 to formulate three LPs
followed by identifying the pure action yj whose convergence-based
mixed strategy zg delivers the required payoff. This y; turns out to be C'
and z} turns out to be (%, %, %)T. Define the vector g = (q1, q2,q3)"
as the probabilities of pure actions (A, B, C), respectively. Then, the
corresponding LP is given as

mcaltx 6g1 + 792 + 5qs (6a)
st. —q1+2q2 —q3 <0 (6b)
G1+3q2 =293 <0 (6¢)

—q1 —Tq2 —2¢3 <0 (6d)
—6g2 —¢q3 <0 (6¢)
¢G1tg+g=1 (61)
q1,92,93 € [0,1]. (62)

The constraints in (6b)—(6e) restrict the opponents to (U, R) while
(6a) maximizes the expected payoff for the IP. The IP obtains a
payoff of 5.78(= Q) with this particular strategy, which is greater
than U (y) = 3. |

Convergence-based mixed strategies are optimal in a class of strate-
gies as stated ahead.

Corollary 2: When the [P is restricted to playing a single pure action
repeatedly, (4) in Theorem 4 delivers the highest payoff for the /P.

Proof: Since every opponent adheres to FP, the game converges
to the pure Nash equilibrium of G(¥0) in finite steps, when IP plays
yo repeatedly. Thus, the opponents have no incentive to deviate from
(yo, yi Yt ) later. In a finite game, restricting convergence -based
mixed strategy to probabilities of pure action such that z& = 1 when
k = yo and zf = 0 otherwise and maximizing the payoffs using (4)
delivers the subgame with the highest Nash equilibrium payoff. |

For instance, in Example 2, three pure actions of the IP lead to three
different pure Nash equilibria (A, U, N), (B, D, L), and (C,U, R)
when the IP is restricted to playing a pure action repeatedly. Since the
expected payoffs are equivalent to the Nash equilibrium payoffs 3, 3,
and 5, respectively, it is possible to identify C' as the pure action for the
IP that delivers the highest payoff under such restriction, as given by
Corollary 2.

C. Computation of the Strategy Trajectory for the IP

There exist multiple strategy trajectories that obey the probabilities
in z{ and yet are incapable of delivering the expected payoff promised
by Theorem 4. We present ahead an algorithm to compute a strategy
trajectory X that delivers this payoff.

To this end, we divide the infinite trajectory into two parts, the first
being a static finite sequence played only once followed by another finite
sequence that is played repeatedly and indefinitely. We denote the two
sequences as X' and X* of length 7" and 7*, respectively, such that
X' is played once followed by repeated play of X*. It is worth noting
that the IPs expected payoff converges to the payoff obtained during the
sequence X*. We begin with a result that identifies the entries in X'.

Lemma 1: For the subgame G(¥5) computed via Theorem 4, the
sequence X begins with the repetition of the pure action y;;. As aresult,
y¢§ is contained in the tuple X'.

Proof: In order to maximize IPs expected payoff as per Theorem 4
and Corollary 1, it is desirable to restrict the opponents to the pure Nash
equilibrium (y5, y%, 3 ;). Theorem 3 indicates that in FP, the strategies
of opponents converge to this equilibrium in finite time steps, within

the subgame G (¥6). As a result, IPs pure action is restricted to y§ until
the opponents converge to (yo,yg ,y*;), indicating that y5 € X’. W

It has been established via the proof to Lemma 1 that repeated
play of y; alone is adequate in converging all the opponents to the
Nash equilibrium of G, Consequently, the sequence X' is merely a
repetition of y§ for 7’ time instants. In the first time instant, it is assumed
that the opponents play arandom pure action since FP needs at least one
iteration to compute a best response. The value for 7’ takes into account
the number of maximum time instants required by the opponents to
converge at (y5, Y5, y* ;). Furthermore, FP of the opponents allows us
to examine the expected payoffs of a single opponent while everyone
else continues to adhere to their respective equilibria.

We note that the support of zj is the set of pure actions of the IP
with nonzero probabilities and denote it by Y where Y C Y;. If we
collect the constraints in (5) in an equation of the form A - q < 0, the
following result characterizes the relation between elements of A.

Lemma 2: In the subgame G¥6), increasing the probabilities as-
sociated with pure actions other than gy increases the incentive for
the opponents to deviate from (yg,y7,y*;). On the other hand, the
probability for y; itself is inversely proportional to their incentive to
deviate.

Proof: The proof follows from the structure of the game G where
a strategy profile (g, 7, v*;), Yo € Y5, yo 7 g is not necessarily a

Nash equilibrium, making other strategy profiles in the subgame G®o)

more attractive for the opponents. Mathematically, it follows from (5)
that an element A is given by (U;(k, v}, y*;) — U;(k, vy, y*;))-
This expression is always negative for pure action k = y{ while it can
have positive entries for all other actions. Since the constraints are of the
form A - q < 0, all positive entries increase the incentive for opponents
to deviate from (y3,y5,y*,;) while the negative entries work in the
opposite manner, proving Lemma 2. |

Once the players converge to (yg, Y5y ) Theorem 4 and Corol-
lary 1 advocate the existence of a sequence X* with the probability
distribution given by zg that restricts the opponents to (yg, v, y*;),
even when the IP switches to actions other than y(. It has already
been shown, via Lemma 2, that pure actions other than y; increase the
incentive for opponents to deviate from (g, vy ) However, for any
given opponent P, the switch to a d1fferent actlon occurs only when
the expected payoff from U; (k, y7,y* ;) is strlctly lesser than that from
another pure action of P, i.e., U; (k, ¥}, y* ;). Prior to determining X,
it is worth noting that any arbitrary sequence of actions in X* with
probabilities given by z; need not deliver the desired payoff for the IP.
Consider, for instance, a sequence X* = (A, B, B, B,C,C,C,C, ()
in Example 2 with probabilities (5, 2, 3)", derived via Theorem 4 and
Corollary 1. Furthermore, let X' = (C, C, C') to ensure convergence to
the Nash equilibrium (C, U, R). When X' is played first, followed by
a repeated play of X*, IP gets an expected payoff of 3.67 as 7 — oo,
as opposed to the desired 5.78. We address this by commenting on the
size of the sequences X* and X', followed by a result that determines
a candidate sequence X*.

Remark 2: The size of the tuple X*, given by 7*, is determined as
the smallest integer that permits integer values to all pure actions yy €
Y as they achieve their respective probabilities in zj. Furthermore,
let 79 be the maximum number of time instants required to converge
opponents to the Nash equilibrium via FP. The size of the sequence X/,
denoted by 7’ is given by

7' = max{ro, 7*}. 7

|
For instance, when zj is given by (%, 0,1 o 6) the smallest value
for 7* is 6, which indicates the frequency of pure actions via 7*zj is
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(4,0, 1, 1). Furthermore, if the opponents need 3 time instants to con-
verge to the Nash equilibrium, (7) provides a value of 6 (= max{3,6})
for 7. As a result, the sequence X' would be a repetition of the pure
action y{) for 6 time instants. While Remark 2 provides a way to compute
X’ and 7*, they are not adequate in determining a sequence X*. We
provide a result that achieves the desired strategy ahead.

Theorem 5: Let the cardinality of Y;; be denoted by m and the
probability vector z; be denoted by gq* where the individual probability
of a pure action k4 (ks € YY) is given by ¢2. A candidate sequence for
X* that achieves the twin purpose of (i) restricting the opponents to the
Nash equilibrium (yg, v}, y*;) and (ii) generating the expected payoff
as given by Theorem 4 when T — 00 is given as follows:

X* = <k1(1),k1(2)7 .. '7k1(7-*qi()7

ka(r*ai +1),... k(7" (] +a3)),---, (®)
m—1 m
s=1 s=1

k1 =yg ifQZS #0. )

Proof: In order to prove (i), it is adequate to show that the proposed
sequence X* adheres to the constraints in (5) at every time instant. It
follows from Lemma 2 that the opponents’ incentive to deviate from
(yg, Y5y ) decreases with repeated play of y; while it increases with
the play of any other pure action in Y. Denote by ¢ () the probability
of taking a pure action k, at any time step in the interval [0, 7] as
calculated empirically via the histogram of the actions played till time
7. Then, the constraints in (5) reduce to

(10a)
(10b)

qs(T) > q; where ks = y§
and ¢(7) < g5 Vks € Yo" \ {5 }-

Consider first the case when q* # 0.
1) The firststrategy in X* is y;; and is repeated for 7* ¢y s time instants.
Since X* is repeated 1ndeﬁn1tely, the probability qy* of the pure
actionyg aftert € {1,2,...,7"q). v } time instants in pth repetition

is
T+ pT*q;S +t

. = 11
Ay o fpre+t (11)

It can be easily shown that g,+ — ¢y = 0, proving (10a).
0

2

~

For the action ks € Y \ y§ such that k; immediately follows yj

in X*, the probability g, after (7*g;. + t) time instants in the pth
0

repetition is given by

TG+t
&= +p€'* —(&J-ST*q;S +t (12)
with
t<tq; <7* (13)
T'=7"+e¢ (14)

where the latter follows from (7) and € is a nonnegative constant
integer. (12) and (14) together yield

(t=77q5) —ai(e+p7" + 77 g5 +1)
T 4+ pr* + T*q;* +t
0

qs —q; = (15)

The negativity of the first term in the numerator of (15) follows
from (13) while the second term is always negative, thus proving
(10b).

3) Finally, if additional pure actions are played between y; and k,,
the value for the denominator in (12) increases while the numer-
ator remains unchanged. This makes the expression in (15) more
negative.

Now if q_;S = 0, the sequence X' still contains y but the sequence
X* does not use y;. As a result, (11) is inconsequential while (15) is
still negative. This proves (10b) and thus (i) for the sequence given by
(8) and (9).

Since the opponents are restricted to (yg, v yx ) the IP gets its
payoff promised by Theorem 4 at the end of the sequence X* i
every iteration. This is also evident from the fact that the probability
vector for all pure actions within the sequence X* is equal to the
solution of the linear programming problem (q = q*) at the end of the
sequence, indicating the maximum payoff. As 7 — oo, the payoff from
X' becomes negligible since it is played only once and the expected
payoff converges to the solution of Theorem 4 and Corollary 1, proving
part (ii). | |

The construction of an optimal trajectory is summarized in
Algorithm 1. The length of the sequences X* and X' is provided in
Remark 2. For instance, in Example 2, where y§ turns out to be C
and the mixed strategy z; is given by (g, 3, 2)7, the smallest integer
that can achieve X* is 9. Since convergence to Nash equilibrium from
any strategy profile can be obtained in 7y = 4 time instants, 7’ is set
to be 9(= max{4,9}), per Remark 2. It follows from Theorem 4 and
q, : # 0 that the sequence X* begins with y} = C' and repeats until
1ts probability is reached within X*. This is followed by the pure
actions A and B until their respective probabilities are achieved. Tt
is worth noting that this sequence generates negative values for the
expressions in (6) proving that the constraints are valid at every time
instant within the first iteration of X*. Theorem 5 further proves that
the constraints and probabilities remain valid perpetually. In summary,
the sequence X obtained from X' = (C,C,C,C,C,C,C,C,C) and

= (C,C,C,C,C,B,B,B,A) is, indeed, an optimal trajectory
and generates an expected payoff of 5.78 as 7 — oo.

Example 3: A finite nondegenerate ordinal potential three-player
game with respect to the IP (Pp) is presented via Table III . Each
player has three pure actions and each matrix represents the game with
respect to one of the pure actions of the /P. The row player is P; while
the column player is Ps.

In order to identify Uj(y) for the IP in Example 3, we assume
that all players employ FP in the sequence of their indices. Unlike
Example 2, the strategies do not converge to either a single or a mixed
strategy profile. This is not surprising since the game G itself is not
a nondegenerate ordinal potential game. However, the game G is still
within the class of games we consider in this article since the subgames
adhere to Definition 2. While computation of U (y) is not a part of
Algorithm 1, the difference between the expected payoff from X and the
value of Ug (y) illustrates the effectiveness of the algorithm. In order to
obtain a tight estimate, we consider the highest possible value for Ug ()
after 100 000 iterations of FP by all the players. The highest occurs
when the first strategy profile is (C, D, L) and game converges to the
mixed strategies (0.45,0,0.55)T, (0.35,0,0.65), and (0,0.2,0.8)"
generating an expected payoff of 3.89 for the /P.

Algorithm 1 begins with the initialization of the list V[r] and the
matrix W{r, r| (Step 1), where r is the cardinality of the set Yj. This
is followed by determination of 7 linear programming problems and
saving the solution vectors and optimized function values in W and
'V, respectively (Steps 4 and 5). Step 7 identifies the highest entry in V
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TABLE IlI
FINITE THREE-PLAYER GAME G WITH THREE SUBGAMES
P2
L N R
U | 6LH)1 | (1,53)5 ] 5949
Pr M| (1353 | (14,604 | (189 8
D | (1222 | 4676 | (1,787
Po < IP (yo = A)
L N R
U | 5679 | (1,83)5 | (6,75 8
P11 M| 1241 | (1,96)6 | (1,59) 7
D 1402 | 3383 | (1,1,2)4
Po < IP (yo = B)
L N R
U | 8,685 | (1,2,1)1 | (989 6
P11 M| 1414 | (1352 | (1,1,6) 3
D 1,73)8 | 254)9 | (1,9,2)7

Po < IP (yo =C)

Algorithm 1: Determination of X for the IP.
Input: Game G = (n + 1,Y;,U;) and pure Nash
equilibria of subgames G () V y, € Y}

Output: z}, y&, X' and X*

Initialize r < |Yp|, ¢ « 0, list V[r], matrix W|r, ]

for s < 1to r do
Solve Linear Programming problem for yg via (5)
Use the solution to obtain W(s,:] «+— q
Vis] < > kev, ar Uo(k, 5, y%5)

end

s’ < argmax 'V

return y} as y§ and z} as W|s', ]

7* < smallest integer that can enforce z

10 7o <— maximum number of time instants to converge
to (y5,y;,y~ ;) in the subgame G )

u 7’ = max{ry, 7}

12 return X' as {y3(1),5(2).- - 95 (7))

13 if q;(*) # 0 then

14 for [+ 1 to T*q;*) do

15 | et 15 X5 () « yh

16 end

17 end

18 for s <y} to yl except yi do

19 for [ < 1to 77q; do

20 | cc+ 1 X¥(e) s

21 end

22 end

23 return X*

RIS S

while Step 8 returns the corresponding pure action as g and the mixed
strategy as z. In Example 3, y and z turn out to be A and (0, £, £)
while the corresponding highest payoff for the IP is 8.57 (= %). This
is considerably higher than Uj(y) = 3.89 indicating the efficacy of

Algorithm 1.

Computation of zg and y{ provides the optimal convergence-based
mixed strategy. The remaining steps in Algorithm 1 calculate a strat-
egy trajectory and begin with identifying the sizes of 7* and 7'. In
Example 3, the smallest integer that can enforce the probabilities % and
g is 7 while the FP requires at most 4 steps to converge to (A, U, R)
when the IP plays A repeatedly. Step 9, thus, computes 7* as 7, Step
10 determines 7 as 4 while Step 11 computes 7’ to be max{4, 7} = 7.
The sequence X' is obtained via Step 12 as (A, A, A, A, A, A, A).

Example 3 illustrates a scenario where q;S = ¢} = 0. Thus, the /P
need not repeat A to restrict the opponents to the Nash equilibrium
of G, once the opponents use FP to converge. Steps 13—17 can
be skipped for this example and the sequence X* begins with B, the
lowest indexed strategy from Y. Each of the remaining strategies (say
q}) are repeated 7* ¢ times until all the strategies are exhausted (Steps
18-22). Finally, the sequence X* = (B, C,C, C, C, C, C) is returned
by Algorithm 1. The payoff corresponding to X* is 6—70 which s, indeed,
the expected payoff as 7 — oo.

V. CONCLUSION

FP is a popular learning algorithm that converges to a Nash equi-
librium in many classes of games. Here, we assumed that one player
is intelligent that has access to the entire payoff matrix for the game
and need not conform to FP. We show such a player can achieve a
better payoff than the one at the Nash Equilibrium. This result can be
viewed both as a fragility of the FP algorithm to a strategic IP and an
indication that players should not throw away additional information
they may have, as suggested by classical FP. Future work will consist of
consideration of other learning algorithms and the presence of multiple
IPs. Especially for the latter case, techniques from the work in [25] and
[26] to tame computational efficiency will be important.
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