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Abstract—Our work is motivated by humanitarian assistant and
disaster relief (HADR) where often it is critical to find signs of life
in the presence of conflicting criteria, objectives, and information.
We believe ergodic search can provide a framework for exploiting
available information as well as exploring for new information in
applications, such as HADR. Existing ergodic search methods typi-
cally consider search using only a single information map. However,
one can readily envision many scenarios where multiple informa-
tion maps that encode different types of relevant information are
used. Ergodic search methods currently do not possess the ability
to simultaneously search multiple information maps, nor do they
have a way to balance which information gets priority. This leads
us to formulate a multiobjective ergodic search (MO-ES) problem,
which aims to find the so-called Pareto-optimal solutions, for the
purpose of providing human decision makers various solutions that
trade off among conflicting criteria. To efficiently solve MO-ES,
we develop a framework called sequential local ergodic search
(SL-ES), which leverages the recent advances in ergodic search
methods as well as the idea of local optimization to efficiently
compute Pareto-optimal solutions. Our numerical results show that
SL-ES computes solutions of better quality and runs faster than the
baselines.

Index Terms—Ergodic search, motion and path planning,
optimization and optimal control.

I. INTRODUCTION

THIS article considers a trajectory planning problem for area
search, which arises in applications, such as search and

rescue [1], [2], environment monitoring [3], and target localiza-
tion [4], [5]. Given an information map (hereafter abbreviated
as info map), which describes the prior knowledge in form of a
distribution over the area to be searched, the problem requires
planning a trajectory to efficiently gather information. Common
approaches to this problem span a spectrum from spatial decom-
position methods [6], [7], [8], which uniformly cover the area, to
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information-theoretic approaches [3], [9], which greedily move
the robot to the next location with the highest information gain.
This article is interested in the middle of the spectrum with a
type of search called ergodic search [10], [11], [12]. Ergodic
search optimizes an ergodic metric to plan trajectories along
which the time spent in a region is proportional to the amount of
information in that region. Ergodic search inherently balances
exploitation (i.e., myopically searching high-information areas)
and exploration (i.e., attempting to visit all possible locations
for new information), and is thus able to intelligently determine
the robot motion to collect information in the long term.

Existing ergodic search algorithms [10], [11], [12] consider
covering only a single info map. However, one can envision
scenarios where multiple different info maps, each of which
encodes one type of information, may need to be searched
simultaneously. Each info map corresponds to an objective to
be optimized and hence multiobjective optimization. As an
example, consider a hazardous material warehouse with leakage
where a robot is deployed to search for both survivors and leak-
age sources [Fig. 1(a)]. Multiple info maps describing probable
locations of survivors and leakage sources are required to be
simultaneously covered. This problem is truly multiobjective in
the sense that multiple info maps cannot be combined, say as a
linear combination of info maps, as the weights, and hence their
relative importance, is not known.

In this article, we formulate a multiobjective ergodic search
(MO-ES) problem, whose solutions are trajectories that can
simultaneously cover multiple info maps. In general, there is no
single trajectory that optimizes the ergodic metrics with regard
to all info maps at the same time. Thus, this article seeks to
find a set of Pareto-optimal solutions (trajectories): a solution
is Pareto-optimal if one cannot improve the ergodic metric with
respect to one info map without deteriorating the ergodic metric
with regard to at least one of the other info maps. We believe the
visualization of a set of Pareto-optimal solutions can help the
human decision makers (who are often involved in the task [2],
[13]) make more informed decisions based on their domain
knowledge.

Existing approaches that can be used to solve MO-
ES include general-purpose multiobjective genetic algorithms
(MOGA) [14], [15], [16]. While being applicable to various
problems, MOGAs typically fail to leverage the underlying
structure of MO-ES problems (such as the dynamics of the
robot and local metric structures, e.g., convexity), which can
make them inefficient to optimize. Another existing approach

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 11,2025 at 20:23:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2880-8653
https://orcid.org/0000-0001-6490-5587
https://orcid.org/0000-0002-6876-4424
https://orcid.org/0000-0003-0299-1760
https://orcid.org/0000-0002-5434-7945
mailto:zhongqir@andrew.cmu.edu
mailto:akesarim@andrew.cmu.edu
mailto:pvundurt@andrew.cmu.edu
mailto:choset@andrew.cmu.edu
mailto:ian.abraham@yale.edu
https://doi.org/10.1109/TRO.2023.3284358


REN et al.: PARETO-OPTIMAL LOCAL OPTIMIZATION FRAMEWORK FOR MULTIOBJECTIVE ERGODIC SEARCH 3453

Fig. 1. Visualization of the MO-ES problem and our method. (a) Hazardous
material warehouse with leakage, where colored areas indicate different types
of information/targets, such as survivors, leakage sources, etc. Each type of
information is represented as an info map. (b) Weight space B in the presence of
three objectives, wherew(i) is the relative weight of the corresponding info map
φ(i), with i = 1, 2, 3. (c) Scalarized info map φ′, which is the weighted-sum
of all three info maps. An ergodic trajectory is planned with respect to φ′.
(d) Objective space, where each element is an ergodic vector that describes the
ergodic metric of the computed trajectory with respect to φ(1), φ(2), φ(3). The
computed ergodic vectors are guaranteed to be Pareto-optimal.

is the scalarization method [15], [17], which can be applied to
solve MO-ES by sampling a set of weight vectors, computing
the weighted-sum of the objectives for each weight vector, and
running a single-objective algorithm to optimize the scalarized
objective function. While being able to leverage the existing
single-objective algorithms, the scalarization method can be
time-consuming as it optimizes for each weight vector in order
to obtain a set of Pareto-optimal solutions.

This article develops a framework called sequential local
ergodic search (SL-ES) to quickly obtain a set of Pareto-optimal
solutions, and the framework is conceptually visualized in Fig. 1.
First, SL-ES uses a set of weight vectors, and computes a
scalarized info map by taking the weighted-sum of the info
maps to be covered using each weight vector. The idea of
scalarizing info maps (rather than objective functions) allows us
to leverage the existing various (single-objective) ergodic search
algorithms. We formally prove that optimizing the ergodic met-
ric of a trajectory with respect to a scalarized info map yields a
trajectory that is guaranteed to be Pareto-optimal. Furthermore,
SL-ES leverages the idea of local optimization based on the
inherent convexity of the ergodic metric in the Fourier coefficient
space. SL-ES samples weight vectors from the weight space
(i.e., the space that contains all possible weight vectors) in a
breadth-first manner by 1) episodically sampling new weight
vectors in the neighborhood of the current weight vector, and 2)
optimizing the trajectory corresponding to the new weight vector
by using the current solution as the initial guess (to warm-start

the optimization). Finally, to expedite the computation, we also
develop a variant called adaptive SL-ES (A-SL-ES), which can
adjust the density of the sampled weight vectors based on the
similarity of the info maps in the Fourier coefficient space. Our
numerical results show that SL-ES and A-SL-ES compute a set
of solution trajectories with better ergodic metrics than applying
MOGAs to MO-ES. In addition, SL-ES and A-SL-ES require
less than half of the run time of a naive scalarization method that
does not leverage local optimization. We simulate our method
in a hazardous material warehouse in ROS/Gazebo, and verify
that the planned trajectory can be executed on physical robots.

The prior version of this work has appeared in [18]. Different
from [18], this article generalizes the method into a frame-
work with solution quality guarantees by 1) proving the Pareto-
optimality of the computed solutions by SL-ES and A-SL-ES,
2) extending the method from single-agent to multiagent, and
3) providing more numerical results in various info maps, discus-
sion and physical robot demonstrations. The rest of this article
is organized as follows. Section I-A reviews related work and
Section II introduces basic concepts and the problem definition.
The method is elaborated in Section III and the property of the
method is proved in Section IV. The results are discussed in
Section V. Finally, Section VI concludes this article.

A. Other Related Work

1) Ergodic Coverage: A trajectory is ergodic with respect to
an info map if the amount of time spent in a region is proportional
to the amount of information in that region. Ergodic metrics, such
as [10], measure how far a trajectory is from being ergodic, and
by iteratively minimizing the metric, an ergodic trajectory can
be computed. Ergodic trajectory planning has been investigated
within the framework of receding horizon control [11], stochas-
tic optimization [19], and has been leveraged for active learning
and search [12], [20], [21], decentralized exploration [22], real-
time area coverage, and target localization [23], etc. However,
we are not aware of any ergodic search method that considers
covering multiple info maps at the same time, which is the focus
of this article.

2) Multiobjective Optimization: Multiobjective optimiza-
tion (MOO) is a broad topic [15], [17] and has been investi-
gated in robotics-related problems, such as path planning [24],
[25], reinforcement learning [26], design [27], and multiagent
systems [28]. With respect to MOO for search tasks, existing
work has considered simultaneously optimizing exploration and
exploitation for environment monitoring tasks [3]. In [1], a
trajectory is planned to cover a single info map using the ergodic
metric, while other “nonergodic” objectives are considered by
using ε-constraints. Different from [1], this article aims to plan
ergodic trajectories to cover multiple info maps, where each info
map corresponds to an objective.

II. PRELIMINARIES

A. Ergodic Metric

Let W = [0, L1]× [0, L2]× · · · × [0, Lν ] ⊂ Rν , ν ∈ {2, 3}
denote a ν-dimensional workspace that is to be explored by the
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robot. The robot has an n-dimensional state-space (n ≥ ν), and
let qn : [0, T ]→ Rn denote a trajectory in the state space with
T ∈ R+ representing the time horizon. The robot has determin-
istic dynamics given by q̇n(t) = f(qn(t), u(t)), where u(t) is
the control input of the robot. In addition, for each trajectory qn,
let q : [0, T ]→W denote the corresponding trajectory in the
workspace (instead of in the state space).

Let c(x, q), x ∈ W denote the time-averaged statistics of a
trajectory q, which is defined as

c(x, q) =
1

T

∫ T

0

δ(x− q(τ))dτ (1)

where δ is a Dirac function. Let φ :W → R denote a static info
map that describes the amount of information at each location
in the workspace. Each info map is a probability distribution
with

∫
W φ = 1 and φ(x) ≥ 0∀x ∈ W . An ergodic metric [10]

between c(x, q) and an info map φ is defined as

E(φ, q) =
K∑

k=0

λk(ck − φk)
2

=
K∑

k=0

λk

(
1

T

∫ T

0

Fk(q(τ))dτ − φk

)2

(2)

where 1) φk =
∫
W φ(x)Fk(x)dx represents the Fourier coeffi-

cients of the info map, with Fk(q) =
1
hk

Πν
j=1 cos(

kjπqj
Lj

) being
the cosine basis function for some index k ∈ Nν andK being the
number of Fourier bases considered, 2) ck denotes the Fourier
coefficient of c(x, q), 3) hk denotes the normalization factor, as
defined in [10], and 4) λk = (1 + ||k||2)− ν+1

2 denotes the weight
for each corresponding Fourier coefficient.

B. Ergodic Vector and Pareto-Optimality

This article seeks to plan robot trajectories to simultane-
ously cover multiple (static) info maps. For clarity, we use
the superscript in φ(i) to denote a specific info map, with
i ∈ {1, 2, . . . ,m}, where m is a finite number indicating the
total number of the info maps to be covered. Let �E(q) =
(E(φ(1), q), E(φ(2), q), . . . , E(φ(m), q)) denote an ergodic vec-
tor, which describes the ergodic metrics of the trajectory q with
respect to all info maps. Each component of �E(q) corresponds
to an objective function to be minimized. To compare any
two trajectories, we compare the ergodic vectors corresponding
to them using the dominance relation from the multiobjective
optimization literature.

Definition 1 (Dominance [17]): Given two vectors a and b of
lengthm,a dominates b, notationallya � b, if and only ifa(j) ≤
b(j) ∀j ∈ {1, 2, . . . ,m} and a(j) < b(j), ∃j ∈ {1, 2, . . . ,m}.

If a does not dominate b, this nondominance is denoted as
a � b. Given two trajectories q1, q2 (with the same time horizon
[0, T ]), we say q1 dominates q2 (denoted as q1 � q2) if �E(q1) �
�E(q2). Any two trajectories are nondominated to each other if
the corresponding ergodic vectors do not dominate each other.
Among all feasible trajectories, the set of all nondominated
trajectories is called the Pareto-optimal (solution) set, and the set

Fig. 2. Examples of the weight space B when (a) m = 2 and (b) m = 3.
Symbol w(i) stands for the ith component of a weight vector �w.

of the corresponding ergodic vectors is called the Pareto-optimal
front.

C. Problem Statement

This article considers the following MO-ES problem. Given
a set of info maps and the dynamics of the robot, the goal is
to compute a set of dynamically feasible trajectories, whose
corresponding ergodic vectors are Pareto-optimal.

Remark 1: We first focus on the single-agent version of the
problem in an obstacle-free workspace. We will discuss the
extension to the multiagent setting in Section III-G.

III. METHOD

A. Basic Concepts and Overview

Let B := {�w,w(i) > 0, i = 1, 2, . . . ,m, ||�w||1 = 1} denote
the space of possible weight vectors, which is hereafter referred
to as the weight space. The weight space is the first quadrant of
the m-dimensional �1-norm unit sphere. For clarity, we use the
superscript inw(i) to denote the ith component of the weight vec-
tor w ∈ B, which is consistent with the superscript notation in
φ(i). Examples ofB when m = 2, 3 are shown in Fig. 2. An info
map φ can be decomposed with respect to (abbreviated as w.r.t.)
a set of Fourier bases as φ = ΣK

k=0φkFk, where φk denotes the
Fourier coefficient corresponding to each Fourier basis function
Fk, k ∈ {0, 1, 2, . . . ,K}. In practice, K is often selected to be a
finite number instead of infinity. Given a weight vector �w ∈ B,
we choose to scalarize the info maps, as opposed to scalarizing
the objective functions �E(q), by taking the weighted sum of the
info maps to be covered. By doing so, the existing ergodic search
methods that consider a single info map can be leveraged. We
will discuss this in detail later. This scalarized info map can be
represented as the weighted-sum of the corresponding Fourier
coefficients

φ′ =
K∑

k=0

φ′kFk

=

m∑
i=1

w(i)φ(i) =

m∑
i=1

w(i)

(
K∑

k=0

φ
(i)
k Fk

)
. (3)

For each k ∈ {0, 1, . . . ,K}

φ′k =
m∑
i=1

w(i)φ
(i)
k = �w · Φk (4)
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where Φk = (φ
(1)
k , φ

(2)
k , . . . , φ

(m)
k ), �w = (w(1), w(2), . . . ,

w(m)), and · stands for the dot product. The ergodic metric of
q, whose time averaged statistics is described as a set of Fourier
coefficients ck, w.r.t. φ′ is

E(φ′, q) =
K∑

k=0

λk(ck − φ′k)
2

=
K∑

k=0

λk(ck − �w · Φk)
2. (5)

To obtain a set of Pareto-optimal trajectories, this article
develops a framework (Fig. 1): intuitively, in each planning
episode, a �w is sampled from B and a corresponding scalarized
info map φ′ is computed with (4). Then, an ergodic trajectory
w.r.t. φ′ is planned by minimizing E(φ′, q) in (5). Note that, in-
stead of using the weight vector �w to scalarize the ergodic vector
(i.e., the objective vector) �E , as introduced in Section II-B, our
framework scalarizes the info maps, which allows us to leverage
the existing (single-objective) ergodic search algorithms to cover
the scalarized info map. We will prove in Section IV that the
trajectories computed by our framework are Pareto-optimal.

Also note that, with a given initial state of the robot q(0)
and a control u(t), a unique trajectory can be specified (via the
so-called forward simulation). Thus, for presentation purposes,
we use a control u(t), t ∈ [0, T ] to identify a trajectory, and
let u(t)|�w denote the ergodic trajectory computed w.r.t. the
scalarized info map based on �w. In other words, for each �w ∈ B,
a corresponding ergodic trajectory u(t)|�w can be computed.

In addition, with (5), we can observe that:
1) E(φ′, q) (i.e., the objective function to be minimized after

scalarizing the info maps) is a convex function w.r.t. �w
and ck;

2) although ck is nonconvex with respect to u(t) due to the
robot dynamics and the Fourier bases, existing ergodic
search algorithms [10], [12], [23] have shown that this
nonconvexity can be handled by iterative gradient descent
optimization in practice.

Based on these observations, we take the view that a set of
trajectories can be efficiently obtained by episodically sampling
new �w in the neighborhood of the current weight vector, and
running local optimization in each episode. Following this idea,
we propose a framework called SL-ES, which is explained in
the next section.

B. Sequential Local Ergodic Search (SL-ES)

Intuitively, SL-ES covers (or say explores) the weight space
B from some initial weight vector �winit in a breadth-first manner
in order to compute a set of Pareto-optimal solutions. SL-ES
iteratively 1) scalarizes the info maps based on the current weight
vector �w, 2) leverages regular (single-objective) ergodic search
to compute a trajectory (represented by u(t)|�w), and 3) samples
new weight vectors �w′ from B in the neighborhood of �w and
uses u(t)|�w as an initial guess to optimize the ergodic trajectory
corresponding to �w′. The above process iterates untilB has been
fully explored by the sampled weight vectors.

Algorithm 1: Pseudocode for SL-ES.

1: �winit ← InitWeight()
2: uinit(t)|�winit = 0
3: CLOSED← ∅, S ← ∅
4: OPEN← {�winit}
5: while OPEN is not empty do
6: �w ← OPEN.pop()
7: Compute {φ′k∀k ∈ {0, 1 · · · ,K}} with �w and (4)
8: u(t)|�w ← ErgodicSearch({φ′k}, uinit(t)|�w)
9: Add �w into CLOSED

10: Add u(t)|�w into S
11: for all �w′ ∈ Neighbor(�w) do
12: if �w′ /∈ OPEN ∪ CLOSED then
13: uinit(t)|�w′ ← u(t)|�w
14: OPEN.push(�w′)
15: return S and the corresponding ergodic vectors

Specifically, as shown in Algorithm 1, SL-ES begins by
initializing a weight vector �winit (Line 1), which can be either
randomly sampled from B, or specified by the user based on
the domain knowledge of the specific application. An initial
control uinit(t)|�winit corresponding to �w is also initialized (Line
2), which will later be used as the initial guess for the first
episode of the ergodic search. Let OPEN denote a first-in–
first-out queue containing candidate weight vectors that need
expansion, and expanding a weight vector �w means computing
u(t)|�w and sampling new weight vectors in the neighborhood of
�w. Let CLOSED denote a set of weight vectors that have been
expanded, and let S denote the set of corresponding u(t)|�w for
each �w ∈ CLOSED that have been computed at any time during
the computation. Initially, CLOSED and S are all initialized
as empty sets (Line 3) and OPEN is initialized by adding �winit

(Line 4).
In each planning episode (Lines 5–14), a weight vector �w

is popped from OPEN and the corresponding scalarized info
map φ′ is computed based on (4), which is represented by its
Fourier coefficients (Line 7). Then, a regular ergodic search
algorithm is invoked to cover φ′, which iteratively minimizes
(5) from the initial guess uinit(t)|�w (see Section III-C). The
computed solution trajectory (represented by u(t)|�w) as well
as the corresponding �w are then added to S and CLOSED,
respectively. Finally, neighbor weight vectors of �w in B are
sampled (see Section III-D and III-E) and is represented by
Neighbor(�w). For each �w′ ∈ Neighbor(�w), if �w′ has not been
generated yet (i.e., �w′ /∈ OPEN ∪ CLOSED), �w′ is added to
OPEN for future expansion.

SL-ES terminates when OPEN is empty, which indicates that
B has been fully covered by the sampled weight vectors. At
termination, S is returned (Line 15), which contains a set of
control trajectories along with the ergodic vectors corresponding
to these trajectories, which are Pareto-optimal.

C. Ergodic Search Procedure

A benefit of SL-ES is its ability to leverage existing ergodic
search algorithms to coverφ′ in procedure ErgodicSearch within
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Fig. 3. (a) Basic sampling method in the weight space B. (b) Adaptive
sampling method in the affine transformed weight space B′. Each sampled point
in B′ can be affine transformed to a (valid) weight vector in B.

each planning episode. This article leverages the existing ap-
proach in [22], which iteratively minimizes the ergodic metric,
as introduced in (5), within an optimal control framework, and
is able to handle general nonlinear dynamics of the robot. Other
ergodic planners, such as [10], [23], [29], can also be used to
implement the ErgodicSearch procedure within the framework
of SL-ES, in order to handle real-time requirements on compu-
tation or obstacle avoidance constraints in the workspace.

In each planning episode, SL-ES invokes ErgodicSearch with
a specific initial guess uinit|�w, instead of using a random or zero
control as the initial guess. Specifically, this initial guess is set to
be a solution u(t)|�w′ computed in the previous episodes, whose
corresponding weight vector �w′ is close to the current weight
vector �w in the weight space B. As shown in Section V, this “lo-
cal optimization” strategy often expedites the overall planning in
practice in comparison with a naive scalarization method, which
uses u(t) = 0 as the initial guess for each episode.

D. Basic Version of Neighbor Sampling

While SL-ES is general to arbitrary m > 1, to simplify the
presentation, we limit our focus to m = 2, 3. Given a weight
vector �w ∈ B, this article takes a deterministic sampling strategy
with a hyperparameter d denoting the sampling step size. When
m = 2, B is a closed line segment, and the neighbors of a given
�w are defined to be the weight vectors that is of distance d
away from �w along the line segment. When m = 3, B ⊂ R2

is the closed set enclosed by a triangle, as shown in Fig. 2(b).
The neighbors of a given �w are defined to be the four weight
vectors that are of distance d away from �w along the four cardinal
directions, as shown in Fig. 3(a).

In general, B is the first quadrant of the m-dimensional �1-
norm unit sphere, which is an (m− 1)-dimensional bounded
closed set. In other words, B is an (m− 1)-simplex, and each
corner point of B corresponds to an info map to be covered.

Since B is bounded, the aforementioned deterministic sampling
strategy generates a finite number of weight vectors from B, and
SL-ES is guaranteed to terminate when all these sampled weight
vectors are expanded. In addition, this sampling method can be
generalized to m > 3. However, the total number of possible
samples grows exponentially w.r.t.m, and we leave this potential
scalability issue (when m is large) to our future work.

A limitation of this deterministic sampling strategy is that it
does not consider the similarity between info maps to be covered.
For example, if two info maps to be covered are similar (or very
different) to each other, then only a few (or a lot of) weight
vectors are needed in order to obtain a good representation of
the Pareto-optimal front. We handle this limitation in the ensuing
section.

E. Adaptive Neighbor Sampling

This section develops an adaptive neighbor sampling method,
which can adjust the density of samples based on the similarity of
info maps to be covered. Let E(i,j) denote a metric of similarity
between two info mapsφ(i), φ(j) in the Fourier coefficient space,
which resembles the ergodic metric between a trajectory and an
info map [10]

E(i,j) =
√∑K

k=0
λk(φ

(i)
k − φ

(j)
k )2. (6)

For example, in Fig. 8(a), info maps φ(1) and φ(3) are similar to
each other and E(1,3) is small, while φ(1) and φ(2) are different
from each other and E(1,2) is large.

Then, an affine transformed weight space B′ is constructed
as follows. Let B′ be an (m− 1)-simplex where 1) each corner
point of B′ corresponds to an info map φ(i), and 2) the line
segment connecting two corner points (corresponding to φ(i)

and φ(j)) has length E(i,j). B′ exists as the ergodic metric in (6),
which defines the length of each edge of the simplex B′, is a
Sobolev metric [10] and satisfies the triangle inequality.1

After specifying a coordinate system to both B′ and B, an
affine transformation A : B′ → B can be found by associat-
ing each pair of corner points (p, p′), p ∈ B, p′ ∈ B′. For each
p′ ∈ B′, a corresponding pointA(p′) ∈ B can be found, and the
corresponding weight vector �w can be obtained based on the
coordinate of A(p′). Let A�w(p

′), p′ ∈ B′ denote the map from
the coordinate of a pointp′ ∈ B′ to the actual weight vector �w that
will be used to scalarize the info maps, and let A−1�w (�w), �w ∈ B
denote the inverse map from a weight vector �w to the coordinate
of a point in B′.

An example when m = 3 is shown in Fig. 3(b). B′ is a
triangle, where the three enclosing line segments have lengths

1First, in practice, since K in (6) is often selected as a finite number, the
Fourier coefficients φk of any information map φ that appears in (6) must be
zero for all k > K, so that (6) remains a metric and the triangle inequality
holds. Second, it is possible that B′ degenerates and is of dimension less than
(m− 1). (For example, when m = 3, the (m− 1)-simplex is a triangle. If the
three corner points of the triangle are co-linear, the triangle degenerates into
a line segment.) For a degenerate case, the proposed adaptive sampling is not
applicable while the basic sampling in Section III-D still works. For the rest of
the presentation, we consider the case where the constructed (m− 1)-simplex
is nondegenerate.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 11,2025 at 20:23:50 UTC from IEEE Xplore.  Restrictions apply. 



REN et al.: PARETO-OPTIMAL LOCAL OPTIMIZATION FRAMEWORK FOR MULTIOBJECTIVE ERGODIC SEARCH 3457

Algorithm 2: Pseudocode for AdaptiveNeighbor(�w).

1: O ← ∅ �The output, a set of weight vectors.
2: p′ ← A−1�w (�w)
3: Δ← {(0, d′), (0,−d′), (d′, 0), (−d′, 0)} �m = 3
4: for all δ ∈ Δ do
5: p′new ← p′ + δ
6: if p′new /∈ B′ then
7: continue
8: Add A�w(p

′
new) to O

9: return O

E(1,2), E(2,3), E(3,1), respectively. A possible coordinate system
forB′ is to place the origin at point x′ ∈ B′, align the x-axis with
line segment x′y′. Then point y′ has coordinate (E(1,2), 0) and
the coordinate of point z′ can be determined since the length
of x′z′ and y′z′ are both known. With equations x = A(x′),
y = A(y′), z = A(z′), the affine map A can be determined.

With B′ and the map A�w, SL-ES can sample points from B′
(instead of directly sampling weight vectors from B), and each
sampled point p′ ∈ B′ can be transformed into a (valid) weight
vector �w ∈ B, which is then used to compute a scalarized info
map. Specifically, as shown in Algorithm 2, let O denote the
set of sampled weight vectors, which is initialized as an empty
set, and let Δ denote the set of possible differences between two
neighboring points inB′ using the aforementioned deterministic
sampling strategy. Here, we use d′ to denote the step size to
note the difference from the d in the previous section. Note
that, Line 3 in Algorithm 2 only shows the Δ when m = 3. For
each δ ∈ Δ, a neighbor point p′new ← p′ + δ is generated. If p′

is still within B′, the corresponding weight vector A�w(p
′
new) is

added toO. Finally, setO is returned, which contains all sampled
neighbor weight vectors. Here, B′ is constructed by considering
the difference between info maps, and sampling from B′ allows
SL-ES to adapt the sampling density to the difference between
info maps, which is verified in Section V.

F. Discussion

1) Earlier Termination: In practice, when a strong prior pref-
erence between info maps (represented by �winit) is available, the
termination condition of SL-ES can be modified so that SL-ES
terminates earlier when a certain neighborhood of �winit has been
explored. Note that SL-ES explores the weight space B in a
breadth-first manner, and thus, SL-ES explores the neighbor-
hood around �winit in B at first. This allows SL-ES to quickly
compute a set of Pareto-optimal solutions that is “centered” on
the prior preference of the user.

2) Weight Space Coverage: SL-ES can be regarded as a
framework that converts an MO-ES problem into a “weight
space coverage problem”: SL-ES iteratively samples weight
vectors from B and terminates when the entire weight space
B is covered. The adaptive sampling method transforms B into
B′ based on the ergodic metrics between info maps and then
covers B′. Note that other types of transformation (e.g., non-
linear transformation) or different sampling methods can also

be leveraged based on the domain knowledge of the application
within the proposed SL-ES framework.

G. Extension to Multiple Agents

Let j = 1, 2, . . . , N denote a set of N homogeneous agents,
let qj denote a trajectory of agent j in the workspace.
For the purpose of presentation, within this section, let
q := {q1, q2, . . . , qN} denote a joint trajectory of all agents,
where each qj ∈ q has the same time horizon. Similarly to [10]
and [22], the Fourier coefficients of the time-averaged statistics
of a trajectory defined in (1) can be extended to multiple agents
by taking the average over all agents

ck(x, q) =
1

N

N∑
j=1

1

T

∫ T

0

Fk(qj(τ))dτ. (7)

Then, the extension of the ergodic metric to multiple agents
remains the same, as in (2), where ck is now computed based
on (7)

E(φ, q) =
K∑

k=0

λk(ck − φk)
2

=
K∑

k=0

λk

⎛
⎝ 1

N

N∑
j=1

1

T

∫ T

0

Fk(qj(τ))dτ − φk

⎞
⎠

2

. (8)

Finally, the underlying single-objective ergodic search algorithm
used by SL-ES and A-SL-ES can be replaced by a multiagent
algorithm, such as [10], [22], in order to address collision avoid-
ance or communication limitation constraints among the agents
if needed. The rest part of our framework remains the same.
For a multiagent system, the computed solution (i.e., a joint
trajectory) is still guaranteed to be Pareto-optimal (as analyzed in
Section IV) as long as the underlying multiagent ergodic search
algorithm can minimize (8) with respect to a scalarized info map
subject to the agent–agent constraints.

This extension to multiple agents does not consider hetero-
geneity among agents where each agent has diverse capability
to search different info maps, which is beyond the scope of this
work.

IV. ANALYSIS

This section proves that the trajectories computed by SL-ES
and A-SL-ES are guaranteed to be Pareto-optimal to the MO-ES
problem. We begin with a review of the existing scalarization
techniques in the MOO literature [17] which is leveraged here,
and then present our proof.

A. Mathematical Preliminaries

Given a weight vector �w ∈ B, let Ew denote the weighted-sum
of the ergodic vector �E , which is defined as follows:

Ew(q) :=
m∑
i=1

w(i)E(φ(i), q). (9)
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Note that Ew(q) is the weighted-sum of the ergodic metrics
E(φ(i), q), i = 1, 2, . . . ,m, while the E(φ′, q) defined in (5) is
the ergodic metric with respect to the scalarized map φ′.

Proposition 1: For a weight vector �w ∈ Bwithw(i) > 0∀i =
1, 2, . . . ,m, let q∗ be a trajectory that minimizesEw(q), then q∗ is
a Pareto-optimal solution, i.e., the corresponding ergodic vector
�E(q∗) belongs to the Pareto-optimal front.

This proposition is borrowed from [17, Ch. 3], where a
detailed proof can be found. We present the main idea here
to make the article self-contained. We prove by contradiction.
Assume that �E(q∗) is not Pareto-optimal. Then, there exists
another trajectory q′ such that �E(q′) � �E(q∗). Thus, Ew(q′) =∑m

i=1 w
(i)E(φ(i), q′) <

∑m
i=1 w

(i)E(φ(i), q∗) = Ew(q∗). The
above inequality holds due to the definition of dominance
(Def. 1) and that w(i) > 0∀i = 1, 2, . . . ,m. It means that q∗

does not minimize function Ew(q), which leads to contradiction.

B. Pareto-Optimality

Given a trajectory q, let ck(q) denote the Fourier coefficients
of q, as described in Section II. The idea of the proof is to first
calculate the difference Ew(q)− E(φ′, q), which is independent
of q. Therefore, minimizing Ew(q) is equivalent to minimizing
E(φ′, q), i.e., when E(φ′, q) reaches the minimum for a certain
q, Ew(q) also reaches the minimum. Then, since the trajectories
computed by SL-ES and A-SL-ES minimize E(φ′, q), these
trajectories minimize Ew(q) and are Pareto-optimal according
to Proposition 1.

Proposition 2: Let q∗ denote a trajectory that minimizes
E(φ′, q), then q∗ also minimizes Ew(q).

Proof: The difference Ew(q)− E(φ′, q) is given by

Ew(q)− E(φ′, q)

=

m∑
i=1

K∑
k=1

w(i)λk

(
ck(q)− φ

(i)
k

)2

−
K∑

k=0

λk

(
ck(q)−

m∑
i=1

w(i)φ
(i)
k

)2

=

m∑
i=1

K∑
k=1

w(i)λk

(
ck(q)

2 − 2ck(q)φ
(i)
k + φ

(i)
k

2)

−
K∑

k=0

λk

⎛
⎝ck(q)2−2ck(q) m∑

i=1

w(i)φ
(i)
k +

(
m∑
i=1

w(i)φ
(i)
k

)2
⎞
⎠

=

K∑
k=1

λk

(
ck(q)

2
m∑
i=1

w(i)−2ck(q)
m∑
i=1

w(i)φ
(i)
k +

m∑
i=1

w(i)φ
(i)
k

2

)

−
K∑

k=0

λk

⎛
⎝ck(q)2−2ck(q) m∑

i=1

w(i)φ
(i)
k +

(
m∑
i=1

w(i)φ
(i)
k

)2
⎞
⎠

=

K∑
k=0

λk

⎛
⎝ m∑

i=1

w(i)φ
(i)
k

2 −
(

m∑
i=1

w(i)φ
(i)
k

)2
⎞
⎠

which is independent of q. Therefore, if q∗ is a trajectory that
minimizes E(φ′, q), then q∗ also minimizes Ew(q). �

Theorem 1: For a weight vector �w ∈ B with w(i) > 0∀i =
1, 2, . . . ,m, the trajectory computed by SL-ES and A-SL-ES is
Pareto-optimal.

Proof: With Proposition 1 and 2, if a trajectory q minimizes
E(φ′, q), then q is Pareto-optimal to the MO-ES problem. By
design, both SL-ES and A-SL-ES leverage ergodic search al-
gorithms (Line 8 in Algorithm 1) to minimize Ew(q) and the
resulting trajectory is thus Pareto-optimal.

�
Remark 2: Note that the scalarization method in [17] as

well as the above proof requires that all components in the
weight vector are positive (i.e., nonzero). Intuitively, when a
component w(i) is zero, the scalarization method (including
our SL-ES) would ignore the ith objective and only optimize
other objectives. Consequently, the computed solution may still
be improved w.r.t. the ith objective without deteriorating any
other objective, and the solution is thus not guaranteed to be
Pareto-optimal.

C. Discussion on Completeness

In this article, an algorithm is called a “complete” algorithm
if it can find the entire Pareto-optimal front. It remains an open
question whether SL-ES is complete (i.e., whether the entire
Pareto-optimal front can be obtained by varying the weight
vectors sampled from B). Let Eall denote the set of ergodic
vectors corresponding to all feasible trajectories. To show that
SL-ES is complete, we need to show that Eall is convex [17].2

However, the Fourier coefficients of objective functions and
the dynamics of the robot under consideration offer additional
challenges in determining the convexity of Eall.

V. EXPERIMENTAL RESULTS

A. Baseline Methods and Implementation

MOGAs [14], [15] are popular approaches to solve MOO
problems, which are also applicable to the MO-ES problem. We
use NSGA-II [14], a popular MOGA for MOO problems, as the
first baseline approach.3 A second baseline approach is a naive
scalarization method, which differs from SL-ES as it leverages
neither the idea of sequential local optimization nor adaptive
weight sampling. It iteratively samples �w ∈ B, and plans ergodic
trajectory w.r.t. the scalarized info map by optimizing from some
common naive initial guess, such as a zero control input. We
implement our algorithms4 and the naive scalarization method in
Python, and use the NSGA-II implementation from pymoo [30],
a MOGA library, for our experiments. We run tests on a laptop
with an Intel Core i7 CPU and 16 GB RAM. All tests have a
workspace of size [0, 1]× [0, 1]. We specify the robot dynamics

2Specifically, we need to analyze the convexity of the set {�a+�b | ∀�a ∈
Eall, ∀�b ≥ 0,�b ∈ RM}. See [17, Ch. 3] for more details.

3NSGA-II is popular for MOO problems with two or three objectives. When
there are more than three objectives (sometimes referred to as “many-objective
optimization”), NSGA-III can be used.

4Our code is available at https://github.com/wonderren/public_moes
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Fig. 4. (a) Two info maps to be covered. (b) Hyper-volume (H.V.) of the
solution set computed by each method, where we allow NSGA-II (baseline) to
run for three times the run time (R.T., in s) of SL-ES. (c) Ergodic vectors of the
computed solutions. SL-ES computes a set of solutions with similar or better
quality than NSGA-II while using only one third of the run time of NSGA-II.

as a differential-drive robot that initially locates at the center
of the workspace (0.5, 0.5) with orientation zero (pointing to
the right). Specifically, the robot state is s = (px, py, θ) and
the dynamics is ṡ = (v cos(θ), v sin(θ), ω), where (v, ω) is the
control input vector and represents linear and angular velocities.
In our test, the linear velocity is required to be positive at all
times.

For presentation purposes, we use “Scala.” to denote the
naive scalarization method, “SL-ES” to denote our algorithm
with the basic neighbor sampling method (Section III-D), and
“A-SL-ES” to denote our algorithm with the adaptive neighbor
sampling method (Section III-E). We set a termination threshold
ε = 10−3 for each ErgodicSearch call in Algorithm 1: when
the ergodic metric w.r.t. the scalarized info map is no larger
than ε, ErgodicSearch terminates. To describe the quality of
the computed Pareto-optimal front, we use the “hyper-volume”
indicator (H.V.) [15] from the MOO literature. Intuitively, H.V.
denotes the volume enclosed by the computed Pareto-optimal
front and a reference point in the objective space, which is set
to (1, 1, . . . , 1) for all tests.

B. Comparison With NSGA-II

We begin our tests with m = 2, and the info maps are shown
in Fig. 4(a). We compare SL-ES with NSGA-II. We measure
the run time of SL-ES (denoted as T1) and let NSGA-II run
for three times the run time of SL-ES (i.e., 3T1). As shown in
Fig. 4, increasing the “population size” (a hyperparameter in
NSGA-II) can slightly improve the solution quality. However,
SL-ES computes a set of solutions with similar or better quality
(in terms of H.V.) than NSGA-II while using only one third of the
run time of NSGA-II. The possible reason is, while being general
to various problems, NSGA-II treats the objective functions as
a “black-box” and often ignores the underlying structure of the
problem (such as the dynamics of the robot and the local metric
structures).

C. Comparison With Naive Scalarization

We then compare SL-ES against the naive scalarization
method (Scala.) with the same test settings as in the previous
section. In Fig. 5, the horizontal axis indicates the number of
optimization iterations in the ErgodicSearch procedure while
the vertical axis denotes the ergodic metric in (5). Note that at
the beginning of each episode, a different �w (and thus, a different
φ′) is considered, and thus, the ergodic metric changes. As shown
in Fig. 5, Scala. takes the most number of optimization iterations
in each episode since it always starts from the same naive initial
guess (i.e., a zero control input). Both SL-ES and A-SL-ES run
faster than Scala. especially when d decreases (which means
there are more planning episodes). Take Fig. 5(b) for example,
SL-ES requires less than half of the run time in comparison with
Scala., and still computes a solution set with the same quality
in terms of H.V. It shows that running local optimization by
1) sampling weight vectors that are near to each other, and 2)
reusing the solution from the previous episodes as the initial
guess for the current episode, can expedite the computation.

Fig. 5 also demonstrates the benefit of the proposed adaptive
neighbor sampling: specifying d inB is not intuitive and can lead
to either too sparse (d = 0.2) or too dense sampling (d = 0.05),
which leads to either a low H.V. value or a large number of
episodes. Sampling based on d′ in the affine transformed weight
spaceB′ allows the algorithm to adapt to the differences between
info maps. In addition, d′ has the same unit as the ergodic metric
between info maps, and is thus more intuitive to specify.

D. Different Sampling Step Sizes

This section tests A-SL-ES with varying step sizes d′, with
m = 2, and with the same info maps as in the previous section.
As shown in Fig. 6, by tuning d′, there is a tradeoff between
H.V. values, which indicate the quality of the solution set,
and the computational burden, which is indicated by the run
time. Having slightly larger d′ can speed up the computation
significantly with small decrease in H.V.

E. Various Info Maps

We further test the algorithms using various info maps, as
shown in Fig. 7, where each info map is a mixture of 2-D
Gaussian distributions with randomly sampled expectations and
covariance matrices. Among these methods, Scala. and SL-ES
are tested with d = 0.1, NSGA-II has a fixed population size of
30, and A-SL-ES has d′ = 0.05. We observe from Fig. 7 that, our
approach SL-ES computes solutions with better hyper-volume
than the NSGA-II baseline within the same amount of runtime.
In addition, our SL-ES and A-SL-ES compute solutions with
similar quality as the Scala. baseline, while running up to an
order of magnitude faster than Scala.

F. Three Objectives

We then test NSGA-II, SL-ES and A-SL-ES with m = 3. The
info maps are shown in Fig. 8(a). Note that φ(1) is similar to φ(3)

while they are both quite different fromφ(2). Fig. 8(d) shows that
A-SL-ES provides a subset of the Pareto-optimal front of similar
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Fig. 5. Horizontal axis indicates the number of optimization iterations in the ErgodicSearch procedure while the vertical axis denotes the ergodic metric in (5).
Note that at the beginning of each episode, a different �w (and thus, a different φ′) is considered, and thus, the ergodic metric “jumps.” The corresponding tables in
(a)–(c) show the hyper-volumes of different methods with different step sizes. requires obviously less computational time than Scala. (i.e., baseline) to compute a
set of solutions with similar quality in terms of H.V. More discussion can be found in the text.

Fig. 6. Hyper-volume (H.V.) and run time (R.T.) (in s) of A-SL-ES with
varying sampling step size d′. This figure shows, by tuning d′, A-SL-ES can
tradeoff between solution quality and run time. Having slightly larger d′ can
speed up the computation with small decrease in the H.V.

quality in comparison with the results computed by SL-ES (in
terms of H.V.) while having a much smaller run time. From
Fig. 8(b) and (c), it is obvious that A-SL-ES can adaptively
sample weight vectors based on the difference between each
pair of info maps: there are only a few blue points in Fig. 8(c)
to represent the Pareto-optimal front. In contrast, SL-ES has
a lot of samples [the red points in Fig. 8(b)] to represent the
Pareto-optimal front.

We note that the current implementation of the algorithm can
take relatively long runtime to compute a set of Pareto-optimal
solutions [e.g., Fig. 8(d)], which is caused by 1) the difficulty of
the MO-ES problem, and 2) the implementation issue. Specifi-
cally, first, solving a multiobjective optimization problem is in
general computationally expensive since a set of Pareto-optimal
solutions (rather than a single solution) are desired. Second, our

Fig. 7. Comparison of methods with various info maps. (a)–(d) Approxi-
mated Pareto-optimal front computed by various methods. Among them, the
runtime of Scala. and SL-ES are recorded and denoted as R.T. Scala. and
R.T. SL-ES, respectively. NSGA-II is then given a runtime budget of R.T.
Scala. (green stars) and R.T. SL-ES (yellow stars), respectively. The table
shows both the hyper-volume (H.V.) and the runtime (R.T.) ratios. Our meth-
ods (SL-ES and A-SL-ES) compute better quality solution than the NSGA-II
baseline, while running up to an order of magnitude faster than the Scala
baseline.
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Fig. 8. (a) Three info maps to be covered. (b) Solution (red) computed by
SL-ES. (c) Solution (blue) computed by A-SL-ES. (d) Hyper-volume and run
time (in s) of each method. (e) Scalarized info map and the corresponding ergodic
trajectory. A-SL-ES computes solutions of similar quality while requiring less
than half of the run time in comparison with SL-ES and NSGA-II.

implementation is not optimized for running speed. We point
out possible techniques that can expedite the computation in
Section VI.

G. Robot Simulation

We apply the proposed A-SL-ES algorithm to an example
MO-ES problem and simulate the computed trajectory in ROS.5

The example involves a warehouse with hazardous gas leakage.
The goal is to find both sources of leakage and search for
survivors. The two objectives are described using two info maps,
which can be generated based on the prior knowledge of the
warehouse (Fig. 9). Usually these two objectives cannot be
optimized simultaneously as survivors can be far away from
the gas leakage source. We use A-SL-ES to compute a set of
Pareto-optimal trajectories, which can then be visualized to the
decision maker on site so that a more informed decision can be
made. For example, if the effect of the gas for humans is minor
but it affects the goods in the warehouse significantly, one might
want to choose a trajectory that prioritizes finding the leakage
source more than searching for humans inside.

Fig. 9(b) visualizes three Pareto-optimal solutions. For in-
stance, the green trajectory prioritizes finding survivors (the pink
info map) while the red one favors localizing leakage sources
(the yellow info map). Please refer to our multimedia attachment
for more details.

5Our ROS implementation leverages https://github.com/wh200720041/
warehouse_simulation_toolkit and https://github.com/bostoncleek/ergodic_
exploration.

Fig. 9. (a) Warehouse environment and (b) information maps visualized as the
yellow (probable gas leakage locations) and pink (probably survivor locations)
markers on RViz. The current method does not consider obstacle avoidance
during the ergodic planning and our simulation relies on an additional local
planner to avoid obstacles.

Fig. 10. (a) Two info maps to be covered. (b) Scalarized info map and the
planned trajectories for both agents. (c) Two ROSBot used in the test. (d) Test
site and visualize the trajectories to be followed by both robots, where the stars
mark the ending positions of the robots.

H. Test With Two Physical Robots

To verify that the planned trajectories can be executed on
physical robots, we run tests with two ROSBots [Fig. 10(c)],
a different-drive wheeled robot with the ROS navigation stack
installed.6 ROSBot is equipped with a 2-D Lidar for localization,
and we first build a 2-D occupancy grid map by manually
commanding a ROSBot to move around the workspace and then
copy the map to both the robots for localization. As shown in
Fig. 10(a), we consider two info maps and run SL-ES to cover
them. We then randomly pick a solution, which corresponds
to the weight vector (0.8, 0.2), for execution. To execute the
planned trajectories using the ROS navigation stack available on
ROSBot, we down-sample the trajectory and send the resulting
waypoints to ROSBot to follow, rather than sending velocity or
acceleration commands to the robots. As a result, the robot may
slow down as they are close to a waypoint before moving to the

6[online]. Available: https://husarion.com/manuals/rosbot/
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next waypoint. Please refer to our multimedia attachment for a
visualization.

VI. CONCLUSION

This article formulates a MO-ES problem, which requires
planning trajectories to simultaneously cover multiple info
maps. To solve the MO-ES problem, we propose a framework
called SL-ES. SL-ES scalarizes info maps rather than the objec-
tive functions using a weight vector, which allows us to leverage
the existing various (single-objective) ergodic search algorithms
to plan the trajectory. To obtain weight vectors, SL-ES explores
the weight space (the space that contains all possible weight
vectors) in a breadth-first manner and leverages the idea of
local optimization by 1) sampling new weight vectors in the
neighborhood of the current weight vector, and 2) optimize
the trajectory corresponding to the new weight vector by using
the current solution as the initial guess. In addition, to further
expedite SL-ES, we also develop a variant called A-SL-ES
that can adjust the density of sampled weight vectors based
on a similarity metric between each pair of info maps to be
covered in the Fourier coefficient space. We prove that the
solutions computed by SL-ES and A-SL-ES are guaranteed to
be Pareto-optimal. The numerical results verify the advantages
of SL-ES and A-SL-ES over the baselines. The simulation and
the physical robot tests verify that the planned results can be
executed on real robots.

Future Work: This article is a first attempt to investigate MO-
ES problems, and considers multiple static info maps without
obstacles. It is worthwhile to investigate variants of the MO-ES
problem where the info maps are dynamic (i.e., maps are updated
in an online manner during the robot motion) or the workspace
is cluttered with static and dynamic obstacles. In addition, one
can also consider heterogeneous multiagent systems where each
agent has diverse capability to search the info maps. Finally, to
expedite the computation, one can consider using C++ rather
than Python for implementation, and leveraging real-time er-
godic search techniques [23], especially for time critical tasks,
such as search and rescue.

ACKNOWLEDGMENT

The authors would like to sincerely thank Dr. Geordan Gutow
in the Biorobotics Lab at Carnegie Mellon University for his
valuable inputs on this paper.

REFERENCES

[1] K. Lee, S. Martınez, J. Cortés, R. H. Chen, and M. B. Milam, “Receding-
horizon multi-objective optimization for disaster response,” in Proc. Annu.
Amer.Control Conf., 2018, pp. 5304–5309.

[2] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the
control perspective,” J. Intell. Robotic Syst., vol. 72, no. 2, pp. 147–165,
2013.

[3] W. Chen and L. Liu, “Pareto Monte Carlo tree search for multi-objective
informative planning,” in Proc. Robotics: Sci. Syst., Freiburg im Breisgau,
Germany, 2019, pp. 1–10.

[4] M. Garzón, J. Valente, J. J. Roldán, L. Cancar, A. Barrientos, and J. Del
Cerro, “A multirobot system for distributed area coverage and signal
searching in large outdoor scenarios,” J. Field Robot., vol. 33, no. 8,
pp. 1087–1106, 2016.

[5] L. C. Pimenta et al., “Simultaneous coverage and tracking (SCAT) of mov-
ing targets with robot networks,” in Algorithmic Foundation of Robotics
VIII. Berlin, Germany: Springer, 2009, pp. 85–99.

[6] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull, “Morse
decompositions for coverage tasks,” Int. J. Robot. Res., vol. 21, no. 4,
pp. 331–344, 2002.

[7] M. Santos, Y. Diaz-Mercado, and M. Egerstedt, “Coverage control for
multirobot teams with heterogeneous sensing capabilities,” IEEE Robot.
Automat. Lett., vol. 3, no. 2, pp. 919–925, Apr. 2018.

[8] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive cov-
erage control for networked robots,” Int. J. Robot. Res., vol. 28, no. 3,
pp. 357–375, 2009.

[9] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed robotic
sensor networks: An information-theoretic approach,” Int. J. Robot. Res.,
vol. 31, no. 10, pp. 1134–1154, 2012.
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