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Abstract— In this article, we study a variation of the active
target-attacker-defender (ATAD) differential game involving mul-
tiple targets, an attacker, and a defender. Our model allows for
1) a capability of the defender to switch roles from rescuer
(rendezvous with all the targets) to interceptor (intercepts the
attacker) and vice versa and 2) the attacker to continuously
pursue the closest target (which can change during the course
of the game). We assume that the mode of the defender (rescue
or interception) defines the mode of the game itself. Using the
framework of Games of a Degree, we first analyze the game
within each mode. More specifically, the objectives of the players
are taken as a combination of weighted Euclidean distances and
penalties on their control efforts. We model the interaction of
the players within each mode as a linear quadratic differential
game (LQDG) and obtain the open-loop Nash equilibrium
strategies. We then use the receding horizon approach to enable
switching between the modes to obtain switching strategies for the
players. By partitioning the matrices associated with the Riccati
differential equations we obtain geometric characterization of the
trajectories of the players. Furthermore, under mild restrictions
on the problem parameters and for a particular choice of the
defender’s switching function we show that interception mode is
invariant. We illustrate our results with numerical simulations.
Experimental results involving multiple autonomous differential
drive mobile robots are presented.

Index Terms— Autonomous multiagent systems, Nash equi-
librium, pursuit evasion differential games, receding horizon
approach, switching strategies, target-attacker-defender (TAD)
differential games.

I. INTRODUCTION

THE study of autonomous multiagent interactions has
received considerable interest in recent years. This is

mainly due to their applicability in modeling complex strate-
gic phenomena arising in areas such as surveillance, rescue
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missions, combat operations, navigation, and analysis of bio-
logical behaviors. This article is concerned with analyzing
strategic situations observed in the engineering applications
such as a defense system protecting critical infrastructures
(e.g., air crafts, naval ships) against attacks from incoming
missiles, interceptor defending an asset against intrusions, and
biological behavior such as mothers protecting young from
potential attacks by the predators.

A common feature in the above strategic situations is the
presence of multiple agents which are at conflict or coop-
eration that evolves over time. These situations are usually
analyzed using the mathematical framework of pursuit-evasion
games with three players—Target, Attacker and Defender–and
referred to as a target-attacker-defender (TAD) game. Here,
the goal of the attacker is to capture the target which tries to
evade the attacker, and the goal of the defender is to intercept
the attacker before the attacker captures the target. In a TAD
game the target is assumed to be nonreactive (stationary or
moves on a prescribed trajectory), and when the target is
maneuverable then the interaction is referred to as an active
TAD (ATAD) game; see references in Section I-B. Rescue
type of interactions in the scenarios mentioned above can
be modeled using the framework of a Prey-Protector-Predator
(P3) game which was introduced in [1]. Here, the goal of the
protector is to rendezvous with the prey in order to rescue the
prey before it is captured by the predator.

A. Contributions

A majority of the existing literature on (A)TAD and
P3 games consider three-player engagements. In the real-
world applications, for example, combat operations, rescue
missions, protection of young and coordinated hunting in the
animal world often involve multiple (n ≥ 3) players. Further,
in almost all the existing works, the interactions between the
players are fixed throughout the duration of the game. In the
real-world scenarios, these interactions often change during
the course of the engagement. For example, the defender may
find it economical to rescue the targets instead of intercepting
the attacker from the onset of the game. Only at an opportune
moment, when the threat level reaches a certain threshold,
the defender may want to switch to intercepting the attacker.
Further, due to the presence of multiple targets, the attacker
may want to dynamically update the target it wants to capture
as the game evolves in time.
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The contribution of this article is to introduce a framework
for studying dynamically evolving multiagent interactions of
ATAD type. In particular, the novelty of our work lies in the
consideration of the presence of multiple targets, and a flexible
(and powerful) capability of the defender to autonomously
switch roles from being a rescuer to interceptor and vice versa.
Introducing these two features naturally leads to challenging
questions such as 1) can the trajectories of the attacker and
the target it pursues be geometrically characterized? 2) how
do the trajectories of targets evolve when the defender acts as
a rescuer and as an interceptor? and 3) under what conditions
will the attacker lock on to a target and pursues it forever? To
address these questions we consider a model where players
engage in two types of interactions, also called as modes,
based on the role of the defender. In the rescue mode,
the defender attempts rendezvous with the targets, whereas
in the interception mode it tries to intercept the attacker. The
attacker tries to capture a closest target and all targets try to
evade the attacker. The defender is capable of autonomously
switching the roles based on the state of the game. Our work
distinguishes from the existing literature where the interactions
are fixed for the entire duration of the engagement. To achieve
our objective, first we fix the interactions of the players in one
of the modes alone. Using the Games of a Degree approach,
the interaction among the players in a mode is formulated
as a finite horizon nonzero sum linear quadratic differential
game (LQDG); similar approach was followed in the works [2]
and [3], and the open-loop Nash equilibrium control strategies
of the players are computed. To facilitate switching between
the modes, we adopt the receding horizon approach to obtain
switching strategies of the players. The main results of our
article are summarized as follows.

1) In the interception mode, we show in Theorem 3 that
the attacker and its closest target move on a straight line
joining their initial locations.

2) In the interception mode, we show in Theorem 4 when
the targets are identical, then the closest target (to the
attacker) and other targets undergo parallel evolution.

3) In interception mode, we show in Lemma 1 that the
distance between the closest target (to the attacker) and
other targets either increase or decrease depending upon
the bounds placed on the planning horizon length. Using
this result, and with a particular form of defender’s
switching function we show in Theorem 6 that the
interception mode is invariant, and the attacker locks on
to a target for the remaining duration of the game, thereby
demonstrating the convergence of the mode induced by
the switching policy.

4) In the rescue mode, we show in Theorem 7 that the
distance between the closest target (to the attacker) and
the other targets remains constant.

The article is organized as follows. In Section II, we present
dynamics of the players and their interactions. In Section III,
we solve the LQDG assuming that the mode of the game is
restricted to either rescue or interception alone and derive
the open-loop Nash equilibrium strategies of the players.
In Section IV, we augment the open-loop Nash equilibrium
strategies with receding horizon approach to enable switching

and provide an algorithm for computing the switching strate-
gies of players. In Section V, we provide results related to the
behavior of the players. In Section VI, we illustrate our results
with numerical simulations. Toward a practical realization of
our study, in Section VII, we illustrate our results taking
differential drive mobile robots (DDMRs) as players. Finally,
Section VIII provides concluding remarks and a summary of
future research.

B. Overview of the Related Literature

TAD-type interactions were studied in [4] and [5] in the
context of defending ships from an incoming torpedo using
counter-weapons. In [6], a two-player differential game of
target defense is studied, where the objective of one player
is to drive the state of the system to reach the target whereas
the other player requires the state to avoid the target. A TAD
type interaction referred to as the lady, the bandits, and the
body-guards was proposed in [7]. In [8], the authors study an
ATAD terminal game and propose attacker strategies for evad-
ing the defender while continuing to pursue the target. In [2],
the authors study the problem of defending an asset. Here,
the interactions are modeled as a LQDG. In [9], a guidance
law for defending a nonmaneuverable aircraft is proposed, and
a real-time target guarding problem was studied in [10]. In [11]
and [12], line-of-sight and other guidance laws are presented
for defending aerial targets. In [13], [14], [15], and [16], the
authors consider various cooperation scenarios between the
aircraft (target) and the defensive missile (defender) against the
incoming homing missile (attacker). ATAD type interactions
can be found in applications such as territory or boundary
guarding; see [17] and [18]. P3 type of interactions were
investigated by Oyler et al. [1]. In [19], the authors study a
P3 type interaction of vision-guided predator with multiple
protectors and prey robots.

In a series of works [20]–[23], the authors consider an
ATAD game where a homing missile (attacker) tries to pursue
an aircraft (target), and a defender missile aims at intercepting
the attacker in order to protect the target. In [24], the ATAD
interaction is posed as a zero-sum differential game between
the defender-target team and the attacker. In [25], the same
game is studied and the authors construct barrier surfaces
and characterize the escape and capture regions for the target.
In [26], the authors study a TAD interaction as an LQDG and
provides closed-form solutions for players’ strategies through
the analysis of the associated coupled Riccati differential
equations. In [27], the authors study an LQDG with ATAD
interactions where the target has a predefined goal besides
evading the attacker.

Related to the literature on role switching in ATAD games,
in the recent work [28], the authors study a three-player ATAD
game where the survivability of the attacker is of importance.
In this model, the attacker is allowed to switch from pursuing
the target to evading the defender at an opportune moment.
In [29], the defender’s strategies force the attacker to retreat
instead of engaging the target. In [30], the authors study the
possibility of role switch as well as the cooperation between
the target and defender. In almost all these works, the role of
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the defender is to intercept the attacker and do not consider
the role switch by the defender.

A preliminary conference version of this article appeared
in [31] where a three-player game is studied and does not
consider the presence of multiple targets. This article goes
much beyond the work [31], both in content and scope,
by providing proofs for the analytical characterizations of
trajectories, and illustrations with experiments.

Notation: Throughout this article, R
n denotes the set of

n × 1 real column vectors, R
n×m denotes the set of n × m

real matrices. The symbol ⊗ denotes the Kronecker product.
The transpose of a vector or matrix E is denoted by E �.
The Euclidean norm of a vector x ∈ R

n is denoted by
||x ||2 = (x �x)1/2. For any x ∈ R

n and S ∈ R
n×n, we denote

the quadratic term x �Sx by ||x ||2S. diag{e1, e2, . . . , en} denotes
the block diagonal matrix obtained by taking the scalars or
matrices e1, e2, . . . , en as diagonal elements in this sequence.
In denotes the n × n matrix. 0n and 0n×m denote the n × n
and n × m matrices of all zeros, respectively.

II. MULTIPLE ATAD DIFFERENTIAL GAME

In this section, we describe the interactions and dynamics
of the players and provide the dynamic game methodology for
modeling players’ interactions.

A. Dynamics of the Players

We consider a team of n active targets which are pursued
by one attacker. We assume the availability of one defender
whose task is to either save or rescue all the targets or to
intercept the attacker. We denote the set of n targets by T :=
{τ1, τ2, . . . , τn}, the defender by d and the attacker by a. The
set of players is denoted by P := T ∪ {a, d}. We assume
that the players interact in a 2-D plane. The dynamics of each
player is governed by the following single integrator dynamics:[

ẋi(t)
ẏi(t)

]
=
[

u1i (t)
u2i (t)

]
,

[
xi(0)
yi(0)

]
=
[

xi0

yi0

]
(1)

where (xi(t), yi (t)) ∈ R
2 is the position vector of the player

i ∈ P at time t , (u1i(t), u2i (t)) ∈ R
2 represents the control

input of player i at time t , and (xi0, yi0) ∈ R
2 represents the

initial position vector of player i . We denote the state and
control vector of player i ∈ P as

Xi (t) =
[

xi(t)
yi(t)

]
, ui(t) =

[
u1i (t)
u2i (t)

]
. (2)

By denoting X (t)=[X �
τ1
(t) X �

τ2
(t) · · · X �

τn
(t) X �

d(t) X �
a(t)]�,

the dynamic interaction environment of the players can be
written compactly as follows:

Ẋ(t) =
⎛⎝ n∑

j=1

Bτ j uτ j (t)

⎞⎠+ Bdud(t) + Baua(t) (3)

where Bτ j = [
d1 d2 · · · dn 0 0

]� ⊗ I2 with d j = 1,
dl = 0, ∀ l �= j , Bd = [

0 0 · · · 0 1 0
]� ⊗ I2, Ba =[

0 0 · · · 0 0 1
]� ⊗ I2.

Remark 1: The methodology and results presented in the
article can be extended easily to an n-dimensional setting.

Fig. 1. Interaction of players in both the modes. τm is a target which is at a
minimum distance to the attacker a. (a) Interception mode. (b) Rescue mode.

B. Players’ Interactions as a Differential Game

In our article, the interactions between the players are
described as follows.

I1. The attacker always tries to capture a target which is
at the closest distance to it.

I2. The defender can operate in two modes namely res-
cue or interception modes. In the interception mode,
the defender tries to intercept the attacker, whereas
in the rescue mode the defender tries to rendezvous
with all the targets (in order to save them). The
defender is capable of switching the operational modes
autonomously depending upon the state of the game.

I3. The targets try to evade the attacker–individually, with-
out forming a team–in the interception mode. In the
rescue mode, besides evading the attacker they also
attempt to rendezvous with the defender.

Fig. 1 illustrates the interaction among the players in both the
operational modes. Our work distinguishes from the existing
literature due to the presence of the following three features
in the interactions (I1–I3).

F1. The attacker always pursues a target that is at the
minimum distance to it. In our setting, the target
which is at a minimum distance to the attacker keeps
changing with time.

F2. As the defender can autonomously switch operating
in rescue mode to interception mode and vice-versa,
the players with whom the defender is in direct
conflict/cooperation also changes with time.

F3. The targets are in conflict with the attacker both
in rescue and interception modes, and they are in
cooperation with the defender in rescue mode.

C. Termination Criterion

The outcomes of the interactions are described as follows.
We denote the positive real numbers σd and σa as the capture
radii of defender and attacker, respectively. In the rescue mode,
the interactions terminate when the defender rescues all the
targets, that is, whenever ||Xτ (t) − Xd(t)||2 ≤ σd for all
τ ∈ T , or when attacker captures at least one target, that
is, whenever ||Xa(t) − Xτ (t)||2 ≤ σa for at least one τ ∈ T .
Similarly, in the interception mode, the interactions terminate
when the defender intercepts the attacker, that is, whenever
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||Xd(t)− Xa(t)||2 ≤ σd or when the attacker captures a target,
that is, whenever ||Xa(t) − Xτ (t)||2 ≤ σa for at least one
τ ∈ T .

Remark 2: In the ATAD differential games literature, usu-
ally two approaches are followed for analyzing the interactions
of the type (I1–I3), the Game of Kind (GoK) and the Game of
Degree (GoD). The former approach determines the possible
outcomes of the game from the given initial conditions. In the
latter approach performance metrics–for instance, Euclidean
distance between the players–are used toward quantifying the
outcome of the game. Furthermore, it is possible to embed a
GoK within the framework of a GoD; see [32]. In this article,
we use GoD methodology for analyzing the interactions of the
type (I1–I3); see also Section VI.

III. ANALYSIS IN RESCUE OR INTERCEPTION MODE

In this section, we study the game where the interactions of
the players are fixed in the rescue or interaction mode alone.
Let the target which is at a minimum distance to the attacker
at the initial time t0 = 0 be denoted by τm . Then τm satisfies

τm := arg min τ∈T ||Xa(0) − Xτ (0)||2. (4)

First, we consider the setting where the interaction pattern
of the players is fixed to be either in the rescue or interception
mode for a time duration T > 0. We assume that the attacker
pursues the target τm throughout the time duration [0, T ].
Furthermore, we also assume that the defender operates in
one of these modes for the duration [0, T ]. In the rescue
mode, the defender minimizes the sum of weighted Euclidean
distances to all the targets. In this mode, the targets in T
minimize and maximize their weighted Euclidean distance
with the defender and the attacker, respectively. In the inter-
ception mode, the defender minimizes its weighted Euclidean
distance with the attacker while the targets in T maximize
their weighted Euclidean distances with the attacker. In our
work we allow for variable speeds of the players. Further, all
the players simultaneously minimize the energy expenditure
i.e., the control effort to be consumed in (both) the modes.
The performance metric to be minimized by player i ∈ P is
then given by

Ji
(
uτ1(.), . . . , uτn (.), ud(.), ua(.), t0, T

)
:= Gi (t0 + T ) +

∫ t0+T

t0

Li (t)dt (5)

where G(T ) = Gi (t0 + T ) (as t0 = 0) and Li (t) denote the
terminal and running costs of player i ∈ P . These costs for
players {τ j ∈ T , d, a} are given by

Gτ j (T ) = αR

2

∥∥Xτ j (T ) − Xd(T )
∥∥2

Qτ j dT

− 1

2

∥∥Xτ j (T ) − Xa(T )
∥∥2

Qτ j aT
= 1

2

X(T )
2

Q̃τ j T
(6)

Lτ j (t) = 1

2

∥∥uτ j (t)
∥∥2

Rτ j
+ αR

2

∥∥Xτ j (t) − Xd(t)
∥∥2

Qτ j d

− 1

2

∥∥Xτ j (t) − Xa(t)
∥∥2

Qτ j a

= 1

2

∥∥uτ j (t)
∥∥2

Rτ j
+ 1

2

∥∥X(t)
∥∥2

Q̃τ j
(7)

Gd(T ) = αR

2

n∑
j=1


Xτ j (T ) − Xd(T )
2
Qdτ j T

+ αI

2

Xd(T ) − Xa(T )
2

QdaT
= 1

2

X(T )
2

Q̃dT
(8)

Ld(t) = 1

2

ud(t)
2

Rd
+ αR

2

n∑
j=1


Xτ j (t) − Xd(t)
2
Qdτ j

+ αI

2

Xd(t) − Xa(t)
2

Qda

= 1

2

ud(t)
2

Rd
+ 1

2

X(t)
2

Q̃d
(9)

Ga(T ) = 1

2

∥∥Xτm (T ) − Xa(T )
∥∥2

Qaτm T
= 1

2

X(T )
2

Q̃aT
(10)

La(t) = 1

2

ua(t)
2

Ra
+ 1

2

∥∥Xτm (t) − Xa(t)
∥∥2

Qaτm

= 1

2

ua(t)
2

Ra
+ 1

2

X(t)
2

Q̃a
. (11)

Here, the matrices Qi jT and Qi j , i, j ∈ P , i �= j
are symmetric 2 × 2 matrices. Further, Q̃iT and Q̃i are
2N × 2N symmetric matrices, with N = n + 2, and Ri

are 2 × 2 symmetric and positive definite matrices for all
i ∈ P . The matrices Q̃i and Q̃iT have the similar structures
except an additional subscript T , and are described as follows.

Q̃τ j =
[

Q1 Q�
2

Q2 Q3

]
, where Q1 = diag{qτ1, . . . , qτn } with

qτi = (αR Qτ j d − Qτ j a) for i = j and qτi = 0 for i �= j , Q2 =
[q̂1, . . . , q̂n] with q̂ j =

[ −αR Qτ j d

Qτ j a

]
, q̂l = [ 02

02

]∀ l �= j , and

Q3 = diag{αR Qτ j d,−Qτ j a}. Q̃d =
[

Q4 Q�
5

Q5 Q6

]
, where Q4 =

αR diag{Qdτ1 , . . . , Qdτn }, Q5 = −αR

[
Qdτ1 Qdτ2 ··· Qdτn
02 02 ··· 02

]
, and

Q6 =
[

(αR
∑n

j=1 Qdτ j +αI Qda) −αI Qda

−αI Qda αI Qda

]
. Q̃a =

[
Q7 Q�

8
Q8 Q9

]
, where

Q7 = diag{qτ1, . . . , qτn } with qτi = Qaτm for τi = τm and

qτi = 02 for τi �= τm ; Q8 = [q̂τ1, . . . , q̂τn ] with q̂τi =
[

02−Qaτm

]
for τi = τm , q̂τi = [ 02

02

]
for τi �= τm ; and Q9 = diag{02, Qaτm }.

The dimension of the matrices Q3, Q6, Q9 is 4 × 4;
Q1, Q4, Q7 is 2n × 2n and of Q2, Q5, Q8 is 4 × 2n. The
parameters αR, αI ∈ {0, 1}, reflect the fact that when the game
is in rescue mode the parameters are set to (αR, αI ) = (1, 0),
and they are set to (αR, αI ) = (0, 1) in the interception mode.

Remark 3: From (6) to (11), the parameters (αR, αI ) appear
only in the objectives of the defender and the targets and not
the attacker. This implies that in our setting the attacker is
oblivious to mode switching of the defender.

We assume that all the players are aware of the objectives
of themselves as well as the other players and have access
to the state vector x(t) for all t ∈ [t0, t0 + T ]. Each player
i ∈ P solves the following optimal control problem:

min
ui (.)

Ji
(
uτ1(.), . . . , uτn (.), ud(.), ua(.), t0, T

)
s.t (3). (12)

Due to linearity of the dynamics (3) and the quadratic
nature of the performance metrics (5), problem (12) describes
a n + 2 player finite horizon nonzero sum LQDG in rescue
or interception mode. We seek to obtain the Nash equilibrium
strategies of the players.
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Definition 1 (Nash Equilibrium): The strategy profile
(u∗

τ1
(.), u∗

τ2
(.), . . . , u∗

τn
(.), u∗

d(.), u∗
a(.)) is a Nash equilibrium

for the LQDG (12) if the following set of inequalities hold
true for every i ∈ P:

Ji
(
u∗

i (.), u∗
−i (.), t0, T

) ≤ Ji
(
ui (.), u∗

−i (.), t0, T
) ∀ui (.). (13)

Here, the notation −i stands for players other than i , that
is −i := P\{i}, and u−i (.) is the strategy profile of all the
players in P excluding player i .

Remark 4: It is possible to consider interactions involving
cooperation between targets and the defender as a team playing
against the attacker which will result in minmax strategies;
see [2]. In our article, the defender’s objectives are different
in rescue and interception modes. Further, we do not assume
cooperation between the targets and all the players individually
minimize their objectives. So, we model the interactions as
a nonzero sum game described by (12), and consider Nash
equilibrium as the solution concept.

Remark 5: It is well known in differential games litera-
ture [33] that the strategies of players depend upon the infor-
mation available to the players while taking their decisions;
referred to as information structure. Commonly, two types of
information structures are used in differential games. In the
open-loop information structure, the decisions of players are
functions of time and the initial condition. In the feedback
information structure, the decisions of players are functions
of the state variable. There exist methods for computing both
the open-loop and feedback Nash equilibria [34]. However,
in this article due to the complexity of analysis, to allow for
defender’s role switch, and later for using a receding horizon
approach, we restrict our attention to open-loop information
structure.

The open-loop Nash equilibrium strategies can be computed
by jointly solving N := n +2 optimal control problems, given
by (12) using the Pontryagin maximum principle. We thus
have the following result from [34].

Theorem 1: [34, Th. 7.2] Consider the N player finite
horizon LQDG described by (12) with open-loop information
structure. Let there exist a solution set {Pi(t), i ∈ P} to the
following N coupled Riccati differential equations:

Ṗi (t) = Pi (t)

⎛⎝ n∑
j=1

[
Sτ j Pτ j (t)

]+ Sd Pd(t) + Sa Pa(t)

⎞⎠− Q̃i

(14)

where Pi (T ) = Q̃iT and Si = Bi R−1
i B �

i . The unique open-loop
Nash equilibrium solution at time t ∈ [0, T ] for every initial
state X (0) is given by

u∗
i (t; X(0)) = −R−1

i B �
i Pi(t)�(t, 0)X(0)

�̇(t, 0) =
(

−
∑

i

Si Pi (t)

)
�(t, 0)

= Acl(t)�(t, 0), �(0, 0) = I2N . (15)

Upon using the open-loop Nash equilibrium
strategies, the closed loop system matrix is given by
Acl(t) = (−∑i Si Pi (t)

)
, and the closed-loop dynamic

interaction environment (3) evolves according to

Ẋ(t) = Acl(t)X(t), t ≥ 0. (16)

Remark 6: As we assumed that the matrix Ri is symmetric
and positive definite, it can be easily verified that the cost
function Ji given by (5) is strictly convex in ui (.) for all control
functions u j (.) j �= i and for all the initial conditions X0.
This implies that the conditions obtained using the Pontryagin
maximum principle are both necessary and sufficient.

Next, we discuss the conditions which guarantee the solv-
ability of the coupled Riccati differential equation (14). Let us
define

M =
[

02N −S
−Q� 02N 2

]
, S = [ Sτ1 Sτ2 · · · Sτn Sd Sa

]
Q = [

Q̃�
τ1

Q̃�
τ2

· · · Q̃�
τn

Q̃�
d Q̃�

a

]
H (T ) = [

I2N 02N · · · 02N
]

e−MT[
I2N Q̃�

τ1T · · · Q̃�
τn T Q̃�

dT Q̃�
aT

]�
. (17)

The next result relates the solvability of the Riccati differ-
ential equations (14) with invertibility of the matrix H (T ).
Here, H (T ), Si , Q̃i and Q̃iT , i ∈ P are 2N × 2N matrices,
and M is a 2N(N + 1) × 2N(N + 1) matrix.

Theorem 2: [34, Th. 7.1] For the N player finite horizon
LQDG described by (12), the coupled Riccati differential
equation (14) has a solution for every initial state X (0) over
the interval [0, T ] if and only if the matrix H (T ) is invertible.

The conditions under which the Riccati differential equation
(14) admits a solution follow from [34, Proposition 7.6]. The
state equation (16) can be solved as

X(t) = [ I2N 02N · · · 02N
]
eM(t−T )[

I2N Q̃�
τ1 T

· · · Q̃�
τn T

Q̃�
dT

Q̃�
aT

]�
H −1(T )X0. (18)

Remark 7: From Theorem (2) it is evident that the horizon
length T must be selected such that the matrix H (T ) given
by (17) is invertible; see also Remark 11.

IV. SWITCHING ANALYSIS USING RECEDING

HORIZON APPROACH

In Section III, we have analyzed the situation where the
interactions of the players are fixed for a duration [0, T ] in one
of the modes. Now, to allow for switching between the modes
and for players to adapt their strategies, the open-loop Nash
equilibrium solution is augmented with the receding horizon
or moving horizon approach. In this method, every player
computes the open-loop Nash equilibrium at each instant of
time and implements the computed strategy for only one-time
step. Players then repeat the procedure until the termination
criteria are met while updating any change in the mode of the
game (by the defender) and the closest target (by the attacker).

We now present the receding horizon approach for the N
player game. We consider the policy or strategy time instants
tk = kδ, k = 0, 1, 2, . . . , with t0 = 0 and 0 < δ � T .
At any time instant tk , using X (tk) as the initial state, players
evaluate the open-loop Nash equilibrium control strategy over
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the planning horizon [tk, tk + T ], that is, players i ∈ P
minimize the performance indices given by

J RH
i � Ji

(
uτ1(.), . . . , uτn (.), ud(.), ua(.), tk, T

)
. (19)

The open-loop Nash equilibrium strategy of player i over
the interval [tk, tk + T ] is obtained from (15). However,
the open-loop Nash equilibrium strategies are implemented
only for the period [tk, tk+1), and the receding horizon Nash
control for player i at time t ∈ [tk, tk+1) with the initial state
variable X (tk) is then given by

uRH
i (t; X(tk)) = −R−1

i B �
i Pi (t − tk)�(t − tk, 0)X(tk). (20)

The state variable at time instant tk+1 is obtained from (18)
as

X(tk+1) = [ I2N 02N · · · 02N
]
eM(tk+1−T )[

I2N Q̃�
τ1 T

· · · Q̃�
τn T

Q̃�
dT

Q̃�
aT

]�
H −1(T )X(tk). (21)

Next, at the time instant tk+1 the LQDG described by the
objectives (19) and the dynamics (3) is solved by setting tk →
tk+1 and X (tk) → X (tk+1) for the duration [tk+1, tk+1 + T ].
Again, the open-loop Nash equilibrium strategies of players,
obtained similarly as (20), are implemented only for the period
[tk+1, tk+2) to obtain the state variable X (tk+2). This procedure
is repeated again till the game termination criteria are met.

A. Target Update by the Attacker

The closest target pursued by the attacker can change with
time requiring the attacker to update the closest target as
the game proceeds in time. To incorporate this feature (F1),
we assume that τm is the closest target to the attacker at time
instant tk , that is

τm := arg min τ∈T ||Xτ (tk) − Xa(tk)||2 (22)

then the attacker pursues the target τm and plays the game
described by the objectives (19) to obtain the open-loop Nash
equilibrium strategies for the duration [tk, tk +T ]. The attacker
implements these strategies only for the duration [tk, tk+1).
Then at the time instant tk+1 the attacker reevaluates the closest
target to pursue, using (22), and computes the open-loop Nash
equilibrium strategy for the duration [tk+1, tk+1 + T ], and
implements it for the duration [tk+1, tk+2). This process is
repeated until the termination criterion is met.

Remark 8: It is possible that at the time instant tk two or
more targets could be at the closest distance to the attacker.
To handle such a scenario, we assume that the attacker moves
toward the target that is farthest from the defender. If these
targets are equidistant from the defender then we assume that
the attacker chooses one target randomly. However, when the
attacker is equipped with a discriminatory sensor then the
attacker chooses a target based on some criterion, for instance,
minimum index.

B. Operational Mode Switch by the Defender

The defender can switch autonomously from rescue mode
to interception mode and vice-versa, depending upon the state
of the system; see feature (F2). We assume that the defender

uses a switching function � : R
n → R based on which the

mode switching is realized at tk , that is

(αR, αI ) =
{

(0, 1), �(X(tk)) ≤ 0

(1, 0), �(X(tk)) > 0.
(23)

This implies, at time tk , if �(X (tk)) ≤ 0 then the parameters
(αR, αI ) in the objective functions (19) are set to (0, 1)
(interception mode), and if �(X (tk)) > 0 they are set to (1, 0)
(rescue mode). Once the operational mode is decided by the
defender at time instant tk , the open-loop Nash equilibrium
strategies (20) are evaluated for the duration [tk, tk + T ] and
implemented for the duration [tk, tk+1). Then, at the next time
instant tk+1 the same procedure is repeated until termination
criterion is met. As the state information is available to all the
players, a distance-based criterion is a natural choice for the
switching function. In this article, we consider the following
switching function:

�(X(t)) := ||Xa(t) − Xτm (t)||2 − κσa . (24)

This implies, when the distance between the attacker and
the minimum distance target to the attacker, evaluated at time
instant tk , is less than or equal to κσa > 0 with κ ≥ 1, then
the defender sets the operational mode as interception mode
for the duration [tk, tk+1). The defender can implement these
operational modes in coordination with the targets whenever a
change in the sign of switching function (24) is observed, and
this addresses feature (F2); see [35] probabilistic switching
rules in the context of multiple vehicle intercept problem.

Remark 9: The parameter κ indicates the level of alertness
of the defender. In other words, a highly alert defender
reacts early to an attacker, who is approaching the target,
by switching from rescue mode to interception mode.

Remark 10: We emphasize that in the receding horizon
approach the interactions between the players remain fixed
between the time instants tk and tk+1. This implies that players
only require state information at the time instants tk, k =
0, 1, 2, . . . , to implement the mode-dependent switching
strategies.

Remark 11: The horizon length T indicates intertemporal
decision-making behavior of the players. In (19), there is a
tacit assumption that all the players use the same horizon
length T while synthesizing their receding horizon strategies.
Relaxing this assumption can increase the complexity in the
analysis of switching strategies.

The receding horizon approach for obtaining switching
strategies is presented in Algorithm 1. Here, in step 7 the
function minindex(.) provides the target with minimum
index; see also Remark 8.

V. ANALYSIS OF THE SWITCHING STRATEGIES

In this section, we analyze the switching strategies obtained
through the receding horizon approach and derive results
related to the trajectories of the players.

Assumption 1: The matrices Qi j = Qi jT = I2 for all i, j ∈
P , i �= j and Ri = ri I2, ri > 0, for i ∈ P .

The above assumption implies that players minimize or
maximize their Euclidean distances with other players, and
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Algorithm 1 Synthesis of Switching Strategies Using Reced-
ing Horizon Approach

the penalties on the control efforts in x and y orientations are
treated equally. In the interception mode, the attacker a is in
direct conflict with its closest target τm , and is not responding

to other targets in T \τm and the defender. Whereas the other
targets in T \τm maximize their distances with the attacker and
the defender d minimizes its distance with the attacker. This
implies, it is sufficient to consider the interaction between the
four players {τm, τ, d, a} instead of n + 2 players {T , d, a}.
Based on this observation we have the following result.

Theorem 3: Let Assumption 1 hold true. Let tk be the
time instant when the game switches to the interception mode.
Then, using the receding horizon strategies (20), the attacker
a and its closest target τm move on the straight line joining
their locations, evaluated at tk , for the duration [tk, tk+1).

Proof: We consider the interaction between the players
{τm, τ, d, a}. The Riccati differential equation (14) associated
with player i ∈ {τm, τ, d, a} is given by

Ṗi = −Q̃i + Pi
(
Sτm Pτm + Sτ Pτ + Sd Pd + Sa Pa

)
(25)

where Pi(tk+T ) = Q̃iT . In the interception mode, the matrices
entering the objective functions are

Q̃τm = Q̃τm T =

⎡⎢⎢⎢⎣
−I2 02 02 I2

02 02 02 02

02 02 02 02

I2 02 02 −I2

⎤⎥⎥⎥⎦

Q̃τ = Q̃τT =

⎡⎢⎢⎢⎣
02 02 02 02

02 −I2 02 I2

02 02 02 02

02 I2 02 −I2

⎤⎥⎥⎥⎦

Q̃d = Q̃dT =

⎡⎢⎢⎢⎣
02 02 02 02

02 02 02 02

02 02 I2 −I2

02 02 −I2 I2

⎤⎥⎥⎥⎦
and Q̃a = Q̃aT = −Q̃τm . Then, it follows immediately that

Ṗτm + Ṗa = (Pτm + Pc
)(

Sτm Pτm + Sτ Pτ + Sd Pd + Sa Pa
)

with Pτm (tk + T ) + Pa(tk + T ) = 08. This implies that

Pτm (t) + Pa(t) = 08 ⇒ Pτm (t) = −Pa(t), t ∈ [tk, tk + T ].

(26)

We partition the matrix Pi (t) for i ∈ {τm, τ, d, a} as

Pi (t) =

⎡⎢⎢⎢⎣
P11

i P12
i P13

i P14
i

P21
i P22

i P23
i P24

i

P31
i P32

i P33
i P34

i

P41
i P42

i P43
i P44

i

⎤⎥⎥⎥⎦. (27)

We denote by 	1(t) := Sτm Pτm (t) + Sτ Pτ (t) + Sd Pd(t) +
Sa Pa(t). Substituting for Si = Bi R−1

i B �
i and Ri = ri I2 for

i ∈ {τm, τ, d, a} we obtain

	1(t)=

⎡⎢⎢⎢⎢⎣
r−1
τm

P11
τm

r−1
τm

P12
τm

r−1
τm

P13
τm

r−1
τm

P14
τm

r−1
τ P21

τ r−1
τ P22

τ r−1
τ P23

τ r−1
τ P24

τ

r−1
d P31

d r−1
d P32

d r−1
d P33

d r−1
d P34

d

−r−1
c P41

τm
−r−1

c P42
τm

−r−1
c P43

τm
−r−1

c P44
τm

⎤⎥⎥⎥⎥⎦. (28)
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Using (27) in (25) for i = τm , and premultiplying with the
matrix

[
I2 I2 I2 I2

]
we obtain[

4∑
l=1

Ṗl1
τm

4∑
l=1

Ṗl2
τm

4∑
l=1

Ṗl3
τm

4∑
l=1

Ṗl4
τm

]

=
[

4∑
l=1

Pl1
τm

4∑
l=1

Pl2
τm

4∑
l=1

Pl3
τm

4∑
l=1

Pl4
τm

]
	1(t) (29)

where
∑4

l=1 Pl1
τm

(tk + T ) =∑4
l=1 Pl2

τm
(tk + T ) =∑4

l=1 Pl3
τm

(tk +
T ) =∑4

l=1 Pl4
τm

(tk + T ) = 02. This implies that

P1 j
τm

(t) + P2 j
τm

(t) + P3 j
τm

(t) + P4 j
τm

(t) = 02 (30)

for all t ∈ [tk, tk + T ] for every j ∈ {1, 2, 3, 4}. Again,
premultiplying (25) with

[
I2 02 02 I2

]
and repeating the

same analysis as before we obtain

P1 j
τm

(t) + P4 j
τm

(t) = 02 ⇒ P1 j
τm

(t) = −P4 j
τm

(t) (31)

for all t ∈ [tk, tk + T ] for every j ∈ {1, 2, 3, 4}. Using (31)
in (30) we have

P2 j
τm

(t) + P3 j
τm

(t) = 02 ⇒ P2 j
τm

(t) = −P3 j
τm

(t) (32)

for all t ∈ [tk, tk +T ] for every j ∈ {1, 2, 3, 4}. Again, using
(27) in (25) for i = τm , and postmultiplying with the matrix[

I2 I2 I2 I2
]�

we obtain⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
l=1

Ṗ1l
τm

4∑
l=1

Ṗ2l
τm

4∑
l=1

Ṗ3l
τm

4∑
l=1

Ṗ4l
τm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Pτm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r−1
τm

4∑
l=1

P1l
τm

r−1
τ

4∑
l=1

P2l
τ

r−1
d

4∑
l=1

P3l
d

−r−1
a

4∑
l=1

P4l
τm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
l=1

P1l
τm

(tk + T )

4∑
l=1

P2l
τm

(tk + T )

4∑
l=1

P3l
τm

(tk + T )

4∑
l=1

P4l
τm

(tk + T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 08×2. (33)

Repeating the above exercise for the matrices Pτ and Pa

and then rearranging terms we obtain⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
l=1

Ṗ1l
τm

4∑
l=1

Ṗ2l
τ

4∑
l=1

Ṗ3l
d

4∑
l=1

Ṗ4l
τm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 
(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
l=1

P1l
τm

4∑
l=1

P2l
τ

4∑
l=1

P3l
d

4∑
l=1

P4l
τm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
l=1

P1l
τm

(tk + T )

4∑
l=1

P2l
τ (tk + T )

4∑
l=1

P3l
d (tk + T )

4∑
l=1

P4l
τm

(tk + T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 08×2

where


(t) =

⎡⎢⎢⎢⎢⎣
r−1
τm

P11
τm

r−1
τ P12

τ r−1
d P13

d −r−1
a P14

τm

r−1
τm

P21
τm

r−1
τ P22

τ r−1
d P23

d −r−1
a P24

τm

r−1
τm

P31
τm

r−1
τ P32

τ r−1
d P33

d −r−1
a P34

τm

r−1
τm

P41
τm

r−1
τ P42

τ r−1
d P43

d −r−1
a P44

τm

⎤⎥⎥⎥⎥⎦. (34)

This implies that

4∑
l=1

P1l
τm

(t) =
4∑

l=1

P2l
τ (t) =

4∑
l=1

P3l
d (t) =

4∑
l=1

P4l
τm

(t) = 02

(35)

for all t ∈ [tk, tk + T ]. Next, using (35) in (33) we also have
that

4∑
l=1

P2l
τm

(t) =
4∑

l=1

P3l
τm

(t) = 02 (36)

for all t ∈ [tk, tk+T ]. Next, using (31) we analyze the elements
P12

τm
and P13

τm

Ṗ12
τm

= r−1
τm

P11
τm

P12
τm

+ r−1
τ P12

τm
P22

τ + r−1
d P13

τm
P32

d − r−1
a P14

τm
P42

τm

= (
r−1
τm

P11
τm

+ r−1
a P14

τm

)
P12

τm
+ r−1

τ P12
τm

P22
τ + r−1

d P13
τm

P32
d

Ṗ13
τm

= r−1
τm

P11
τm

P13
τm

+ r−1
τ P12

τm
P23

τ + r−1
d P13

τm
P33

d − r−1
a P14

τm
P43

τm

= (
r−1
τm

P11
τm

+ r−1
a P14

τm

)
P13

τm
+ r−1

τ P12
τm

P23
τ + r−1

d P13
τm

P33
d[

Ṗ12
τm

Ṗ13
τm

]
= (

r−1
τm

P11
τm

+ r−1
a P14

τm

)[
P12

τm
P13

τm

]
+ [ P12

τm
P13

τm

][ r−1
τ P22

τ r−1
τ P23

τ

r−1
d P32

d r−1
d P33

d

]
.

The terminal conditions are P12
τm

(tk + T ) = 02 and P13
τm

(tk +
T ) = 02. From the matrix variation of constants formula
[36, Th. 1, p. 59] it follows immediately that P12

τm
(t) =

P13
τm

(t) = 02 for all t ∈ [tk, tk + T ]. Then from (31) we have

P12
τm

(t) = P13
τm

(t) = P42
τm

(t) = P43
τm

(t) = 02, t ∈ [tk, tk + T ].

(37)

Next, using (37) in (25) with i = τm , we have[
Ṗ22

τm
Ṗ23

τm

] = [ P22
τm

P23
τm

][ r−1
τ P22

τ r−1
τ P23

τ

r−1
d P32

d r−1
d P33

d

]
(38)

with P22
τm

(tk + T ) = P23
τm

(tk + T ) = 02. This coupled with (32)
implies

P22
τm

(t) = P23
τm

(t) = P32
τm

(t) = P33
τm

(t) = 02, t ∈ [tk, tk + T ].

(39)

Again, using (39) in (25) with i = τm we have[
Ṗ21

τm
Ṗ24

τm

] = [ P21
τm

P24
τm

][ r−1
τm

P11
τm

r−1
τm

P14
τm−r−1

a P41
τm

−r−1
a P44

τm

]
(40)

with P21
τm

(tk + T ) = P24
τm

(tk + T ) = 02. This coupled with (32)
implies

P21
τm

(t) = P24
τm

(t) = P31
τm

(t) = P34
τm

(t) = 02, t ∈ [tk, tk + T ].

(41)

Thus the structure of matrix Pτm is given by

Pτm (t) = −Pa(t) =

⎡⎢⎢⎣
−K (t) 02 02 K (t)

02 02 02 02

02 02 02 02

K (t) 02 02 −K (t)

⎤⎥⎥⎦. (42)
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where K (t) =
[

k1(t) k2(t)
k3(t) k4(t)

]
2×2

, ki (t) ∈ R, i = 1, 2, 3, 4. Next,

writing P11
τm

= −K in (25) we get

K̇ = −(r−1
τm

− r−1
a

)
K K − I2, K (tk + T ) = I2. (43)

Now, expanding K we have

k̇1 = −(r−1
τm

− r−1
a

)(
k2

1 + k2k3
)− 1, k1(tk + T ) = 1

k̇2 = −(r−1
τm

− r−1
a

)
(k1 + k4)k2, k2(tk + T ) = 0

k̇3 = −(r−1
τm

− r−1
a

)
(k1 + k4)k3, k3(tk + T ) = 0

k̇4 = −(r−1
τm

− r−1
a

)(
k3k2 + k2

4

)− 1, k4(tk + T ) = 1.

Notice, k2(t) and k3(t) are solutions of the differential
equation

γ̇ = −(r−1
τm

− r−1
a

)
(k1 + k4)γ, γ (tk + T ) = 0.

This implies that k2(t) = k3(t) = 0 for all t ∈ [tk, tk + T ].
Next, k1(t) and k4(t) satisfy the differential equation

ζ̇1 = −(r−1
τm

− r−1
a

)
ζ 2

1 − 1, ζ1(tk + T ) = 1. (44)

So, we have that k1(t) = k4(t) = ζ1(t) for all t ∈ [tk, tk +T ].
So, we have

Pτm (t) = −Pa(t) = ζ1(t)

⎡⎢⎢⎣
−I2 02 02 I2

02 02 02 02

02 02 02 02

I2 02 02 −I2

⎤⎥⎥⎦. (45)

Now, using the open-loop Nash equilibrium strategies (15)
in the game with players {τm, τ, d, a} the state variables of the
target τm and the attacker a are obtained, from (16), as[

Ẋτm

Ẋa

]
= −ζ1(t)

[
R−1

τm

R−1
a

](
Xa − Xτm

)
. (46)

Using the above we have

Ẋa − Ẋτm = −ζ1(t)
(
R−1

a − R−1
τm

)(
Xa − Xτm

)
=
(

ra − rτm

rarτm

)
ζ1(t)

(
Xa − Xτm

)
. (47)

Representing the x and y coordinates of Xa − Xτm as z1 :=
xa − xτm and z2 := ya − yτm , the above equation can be written
as

ż1 =
(

ra − rτm

rarτm

)
ζ1(t)z1, ż2 =

(
ra − rτm

rarτm

)
ζ1(t)z2. (48)

Slope of the line joining the attacker a and the target τm at
time t is given by s1(t) = (ya(t) − yτm (t))/(xa(t) − xτm (t)) =
(z2(t))/(z1(t)), z1(t) �= 0. From (48) we have that when
z1(tk) �= 0 then z1(t) �= 0 for all t ∈ [tk, tk + T ]. The time
derivative of the slope s1(t) results in

ṡ1(t) = ż2(t)z1(t) − ż1(t)z2(t)

z2
1(t)

=
(

ra − rτm

rτm ra

)(
z1(t)z2(t) − z1(t)z2(t)

z2
1(t)

)
ζ1(t) = 0.

Clearly, this implies when xa(tk) �= xτm (tk) the slope s1(t) =
s1(tk) for all t ∈ [tk, tk+1). When z1(tk) = xa(tk)− xτm (tk) = 0
then xa(t) = xτm (t) for all t , this implies the attacker a and
the target τm continue along the y-axis for all t ∈ [tk, tk+1).

Next, we have the following result to infer about the
geometric structure of trajectories of the targets τ ∈ T \τm .

Theorem 4: Let Assumption 1 hold true. Let tk be the time
instant when the game switches to the interception mode. Let
rτ = rτi for all τ, τi ∈ T and τi �= τ . Then the line joining
the targets τm and τ ∈ T \{τm} evolves with a constant slope
for the time duration [tk, tk+1).

Proof: Using the open loop Nash controls, (42) and (28),
the state vector is written as⎡⎢⎢⎣

Ẋτm

Ẋτ

Ẋd

Ẋa

⎤⎥⎥⎦=−

⎡⎢⎢⎣
−r−1

τm
K (t) 02 02 r−1

τm
K (t)

r−1
τ P21

τ r−1
τ P22

τ r−1
τ P23

τ r−1
τ P24

τ

r−1
d P31

d r−1
d P32

d r−1
d P33

d r−1
d P34

d−r−1
a K (t) 02 02 r−1

a K (t)

⎤⎥⎥⎦
⎡⎢⎢⎣

Xτm

Xτ

Xd

Xa

⎤⎥⎥⎦.

Then the position vectors of τm , τ , and a satisfy

Ẋτm = r−1
τm

K (t)
(
Xτm − Xa

)
Ẋτ = −r−1

τ

[
P21

τ Xτm + P22
τ Xτ + P23

τ Xd + P24
τ Xa

]
Ẋa = r−1

a K (t)
(
Xτm − Xa

)
.

Using the above, we have

Ẋτm − Ẋτ = r−1
τm

K (t)
(
Xτm − Xa

)
+ r−1

τ

[
P21

τ Xτm + P22
τ Xτ + P23

τ Xd + P24
τ Xa

]
.

(49)

Next, using (25) and (27) for i = τ , we have

Ṗ23
τ = r−1

τm
P21

τ P13
τm

+ r−1
τ P22

τ P23
τ

+ r−1
d P23

τ P33
d − r−1

a P24
τ P43

τm
, P23

τ (tk + T ) = 02. (50)

Using (42), we can further reduce (50) to the following:
Ṗ23

τ = (r−1
τ P22

τ

)
P23

τ + P23
τ

(
r−1

d P33
d

)
, P23

τ (tk + T ) = 02.

(51)

From the matrix variation of constants formula
[36, Th. 1, p. 59] it follows immediately that:

P23
τ (t) = 02, t ∈ [tk, tk + T ]. (52)

Similarly, (25) and applying (27) for i = τ, τm , we have

Ṗ24
τ = −I2 + r−1

τm
P21

τ P14
τm

+ r−1
τ P22

τ P24
τ + r−1

d P23
τ P34

d

− r−1
a P24

τ P44
τm

, P24
τ (tk + T ) = I2 (53)

Ṗ11
τm

= I2 + r−1
τm

P11
τm

P11
τm

+ r−1
τ P12

τm
P21

τ + r−1
d P13

τm
P31

d

− r−1
a P14

τm
P41

τm
, P11

τm
(tk + T ) = −I2. (54)

Using P11
τm

= −K (t), P23
τ = 02, and rτm = rτ we can further

reduce (53) and (54) as

Ṗ24
τ − K̇ (t) = r−1

τ

[
P21

τ K (t) + P22
τ P24

τ + K (t)K (t)
]

+ r−1
a

[
P24

τ K (t) − K (t)K (t)
]

(55)

with P24
τ (tk + T ) − K (tk + T ) = 02. From (35) and (52) we

have

P21
τ + P22

τ + P23
τ + P24

τ = 02 ⇒ P21
τ = −P22

τ − P24
τ .

Using this in (55) we get

Ṗ24
τ − K̇ (t) = [r−1

τ P22
τ

](
P24

τ − K (t)
)

+ (P24
τ − K (t)

)[(
r−1

a − r−1
τ

)
K (t)

]
(56)

with P24
τ (tk + T ) − K (tk + T ) = 02.
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Again, from the matrix variation of constants formula [36,
Th. 1, p. 59] it follows immediately that

P24
τ = K (t), t ∈ [tk, tk + T ]. (57)

Using (27) for i = τ in (25), we have that P22
τ satisfies

Ṗ22
τ = r−1

τ P22
τ P22

τ + I2, P22
τ (tk + T ) = −I2. (58)

We solve (58) using the same approach as in solving (43)
to get P22

τ (t) = ζ2(t)I2 where ζ2(t) satisfies the differential
equation

ζ̇2(t) = r−1
τ ζ 2

2 (t) + 1, ζ2(tk + T ) = −1. (59)

Using the above, (49) can be written as

Ẋτm − Ẋτ

= r−1
τ K (t)

(
Xτm − Xa

)
+ r−1

τ

[(−P22
τ − P23

τ − P24
τ

)
Xτm + P22

τ Xτ + K (t)Xa
]

= −r−1
τ P22

τ

(
Xτm − Xτ

)
= −r−1

τ ζ2(t)
(
Xτm − Xτ

)
. (60)

Representing the x and y coordinates of Xτm − Xτ as z1 :=
xτm − xτ and z2 := yτm − yτ , then (60) can be written as

ż1 = −r−1
τ ζ2z1, ż2 = −r−1

τ ζ2z2. (61)

Slope of the line joining the target τm and the target τ at
time t is given by s2(t) = (yτm (t) − yτ (t))/(xτm (t) − xτ (t)) =
(z2(t))/(z1(t)), z1(t) �= 0. From (61) we have that when
z1(tk) �= 0 then z1(t) �= 0 for all t ∈ [tk, tk + T ]. The time
derivative of the slope s2(t) results in

ṡ2(t) = ż2(t)z1(t) − ż1(t)z2(t)

z2
1(t)

= −r−1
τ

(
z1(t)z2(t) − z1(t)z2(t)

z2
1(t)

)
ζ2(t) = 0.

Clearly, this implies when xτm (tk) �= xτ (tk) the slope s2(t) =
s2(tk) for all t ∈ [tk, tk+1). When z1(tk) = xτm (tk)− xτ (tk) = 0
then xτm (t) = xτ (t) for all t , this implies the target τm and the
target τ continue along the y-axis for all t ∈ [tk, tk+1).

Theorem 4 says that when all the targets are identical, that
is, with rτ = rτi for all τ, τi ∈ T and τi �= τ , then the
line joining the minimum distance target τm and other targets
T \{τm} evolves with a constant slope. Using the two previous
results we have the following corollary.

Corollary 1: Let Assumption 1 hold true. Let tk be the time
instant when the game switches to the interception mode. Let
rτi = rτ j for all τi , τ j ∈ T and i �= j . Then the angle between
the lines joining the attacker (a), the minimum distance target
(τm) and a target τ ∈ T \τm remains constant for the duration
[tk, tk+1).

Proof: From Theorem 3 and Theorem 4 we know that
slopes of the line joining the players a and τm , and the line
joining τm and τ ∈ T remain constant during the execution
period [tk, tk+1). The statement of the theorem follows imme-
diately from this observation.

From Theorem 3, the attacker a and the target τm move in
a straight line till the next time instant tk+1. Now, at tk+1 it is
possible that the minimum distance target τm (at time tk) is no

longer at a minimum distance to a as other targets in T \τm

are trying to maximize their distance with a. In the following
we derive conditions under which the target τm continues to
be at a minimum distance to the attacker for the entire time
duration [tk, tk+1). Toward this end, we provide some auxiliary
results. Let us denote by d1 := Xτm − Xa and d2 := Xτm − Xτ .
We have the following assumption on the decision horizon and
the penalty parameters.

Lemma 1: Let Assumption 1 hold true. Let tk be the time
instant when the game switches to the interception mode. Let
us assume d1(tk) �= 0 and d2(tk) �= 0. Let rτi = rτ j for all τi , τ j

∈ T and i �= j , and the penalty parameters of a target τ ∈ T
and the attacker a satisfy the condition 0 < (rτ −ra)/(rτ ra) <
1. Then, the distance between the attacker a and it’s minimum
distance target τm , decreases with time for the time duration
[tk, tk+1). Further, with tk+1 − tk = δ,

1) if the length of the planning horizon T > 0 satisfies

√
rτ

[
kπ − tan−1

(
1√
rτ

)]
+ δ < T

<
√

rτ

[(
k + 1

2

)
π − tan−1

(
1√
rτ

)]
+ δ, k ∈ Z (62)

then distance between the targets τm and τ ∈ T \{τm},
increases with time for the time duration [tk, tk+1),

2) if the length of the planning horizon T > 0 satisfies

√
rτ

[(
k − 1

2

)
π − tan−1

(
1√
rτ

)]
+ δ

< T <
√

rτ

[
kπ − tan−1

(
1√
rτ

)]
+ δ, k ∈ Z (63)

then distance between the targets τm and τ ∈ T \{τm},
decreases with time for the time duration [tk, tk+1).

Proof: Equations (47) and (60) are given by

ḋ1 = −rτ − ra

rτ ra
ζ1d1, ḋ2 = − 1

rτ
ζ2d2. (64)

Next, consider the functions V1(t) = (1/2)d �
1(t)d1(t) and

V2(t) = (1/2)d �
2(t) d2(t) defined over the time duration

[tk, tk+1). Clearly, V1(t) ≥ 0 and V2(t) ≥ 0 for all t ∈
[tk, tk + T ]. The differential (44) and (59) are solved [37]
as

ζ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
rarτ

ra − rτ
tan

⎛⎝ tk + T − t√
ra rτ

ra−rτ

+ tan−1

(√
ra − rτ

rarτ

)⎞⎠
ra > rτ√

rarτ

rτ − ra
tanh

⎛⎝tk + T − t√
rarτ

rτ −ra

+ tanh−1

(√
rτ −ra

rarτ

)⎞⎠
rτ > ra

ζ2(t) = −√
rτ tan

(
tk + T − t√

rτ
+ tan−1

(
1√
rτ

))
where ζ1(tk + T ) = 1 and ζ2(tk + T ) = −1. If the penalty
parameters satisfy 0 < (rτ −ra)/(rτ ra) < 1, it is easy to verify
that ζ1(t) > 0 for all t ∈ [tk, tk + T ]; here, we used the fact
that tanh(x) is defined for |x | < 1. Taking the time derivative,
we have V̇1 = ḋ �

1d1 = −((rτ − ra)/(rτ ra))ζ1 d �
1d1 < 0. This
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Fig. 2. Trajectories of players. Labels τm , τ and a are used to illustrate the
position of minimum distance target, a target in T \τm and the attacker at
time instant tk . Labels τ �

m , τ � and a� illustrate the position of the same players
at a time instant t ∈ (tk , tk + 1). (a) 0 < θ < (π/2). (b) (π/2) < θ < π .

implies that the distance between the attacker a and the target
τm decreases strictly with time for the time duration [tk, tk+1).
Next, when the planning horizon length T > 0 satisfies the
condition

√
rτ kπ < T + √

rτ tan−1(1/
√

rτ ) <
√

rτ (k + 1/2)π
and

√
rτ kπ < T − δ + √

rτ tan−1(1/
√

rτ ) <
√

rτ (k + 1/2)π
we have that ζ2(t) < 0 for all t ∈ [tk, tk+1] with tk+1 =
tk + δ. After rearranging these inequalities we obtain the
condition (62). Taking the time derivative, we have V̇2 =
ḋ �

2d2 = −(1/rτ )ζ2 d �
2d2 > 0 for t ∈ [tk, tk+1). This implies that

the distance between the targets τm and τ ∈ T \{τm} increases
strictly with time for the time duration [tk, tk+1). Using the
same approach as above it is easy to verify that when T > 0
satisfies (63) then the distance between the targets τm and
τ ∈ T \{τm} decreases strictly with time for the time duration
[tk, tk+1).

Assumption 2: The targets are symmetric, that is, rτi = rτ j

for all τi , τ j ∈ T and i �= j . The penalty parameters of a
target τ ∈ T and the attacker a satisfy the condition 0 <
(rτ − ra)/(rτra) < 1 and the policy horizon length T > 0
satisfies (62).

As an immediate consequence of Lemma 1 and
Assumption 2, we have the following result.

Theorem 5: Let Assumptions 1 and 2 hold true. Let tk be
the time instant when the game switches to the interception
mode. Then, the target which was at minimum distance to the
attacker a at the time instant tk continues to remain so at the
time instant tk+1.

Proof: From Corollary 1, the angle between the lines
joining the attacker a, the minimum distance target τm , and
the target τ ∈ T \τm remains constant throughout the time
duration [tk, tt+1). Let us denote this angle by θ . First, we con-
sider the case when θ ∈ (0, π/2) as illustrated in Fig. 2(a).
Since τm is the minimum distance target we have n > l. From

Theorem 3 and Theorem 4 we have l > l � and m � > m. Next,
from the triangle �cτma, we have n2 −l2 = (p1 + p3)

2 +(m −
(r2 + r3))

2 − (p1 + p3)
2 − (r2 + r3)

2 = m2 − 2m(r2 + r3) =
m(m − 2l cos(θ)). As n > l and m > 0, we have that
m > 2l cos(θ). Now, using the fact that m � > m and l > l �,
we get

m � > 2l � cos(θ). (65)

From the triangle �a�τ �
mτ �, we have n�2 − l �2(p1 + p2)

2 +
(m � − (r1 + r2))

2 − (p1 + p2)
2 − (r1 + r2)

2 = m �2 − 2m �(r1 +
r2) = m �(m � − 2l � cos(θ)). From (65) this implies n� > l �.
Next, we consider the case when θ ∈ (π/2, π) as illustrated
in Fig. 2(b). From the triangles �a�τmτ and �a�τ �

mτ � we have
n�2−l �2 = (p1+p2)

2+(m+(r1+r2))
2−(p1+p2)

2−(r1+r2)
2 =

m(m + 2(r1 + r2)) > 0.
Clearly, this implies n� > l �. When θ = π/2, we have

r1 + r2 = 0, then n�2 − l �2 = m2 > 0. This implies that for
θ ∈ (0, π) the statement of the theorem holds true. When
θ = kπ, k = 0, 1, all the players lie on the same line and
Lemma 1 provides the desired result.

Remark 12: Here, we emphasize that Fig. 2 connects the
results obtained in Theorem 4, Corollary 1 and Lemma 1 as
build-up toward the result provided in Theorem 5.

Remark 13: When the planning horizon length T is appro-
priately chosen as (62), Theorem 5 implies that the tar-
get which is at a minimum distance with the attacker,
at time instant tk , will remain so for all the time duration
t ∈ [tk, tk + 1).

In the next result we show that switching policy defined by
(24) renders the interception mode invariant, that is, once the
game switches to the interception mode then further switchings
cannot happen. Further, we also show that the attacker locks
on to a target for the remaining duration of the game.

Theorem 6: Let Assumptions 1 and 2 hold true. Let tk be
the time instant when the game switches to the interception
mode from the rescue mode according to the switching rule
�(X (t)) defined by (24). Let the minimum distance target at
time tk be

τ ∗ := arg min τ∈T ||Xa(tk) − Xτ (tk)||2. (66)

Then, the interception mode is invariant. Further,
the attacker locks on to the target τ ∗ for the remaining
part of the game.

Proof: As the game enters the interception mode at tk
we have from (24) that ||Xa(tk) − Xτ ∗(tk)||2 ≤ κσa. Next,
for the time duration [tk, tk+1) we know from Lemma 1 that
||Xa(t)− Xτ ∗(t)||2 is a strictly decreasing function of time for
t ∈ [tk, tk+1). Moreover, from Theorem 5 we have that the
target τ ∗ remains to be the minimum distance target at tk+1 as
well. In particular, we have that

||Xa(tk+1) − Xτ ∗(tk+1)||2 < ||Xa(tk) − Xτ ∗(tk)||2 ≤ κσa

implying that mode switching cannot happen at the time
instant tk+1 and the game continues in the interception mode
during the time period [tk+1, tk+2). Using the same arguments
at next time instant tk+2 we infer that interception mode is
invariant. Furthermore, as the target τ ∗ given by (66) remains
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to be the minimum distance target at every time instant,
the attacker locks on to τ ∗ from tk onwards.

So far, we have analyzed the situation where the game
enters the interception mode at time instant tk . In the following
theorem, we study the nature of trajectories when the game
enters rescue mode at tk .

Theorem 7: Let Assumption 1 hold, and let rτi = rτ j for
all τi , τ j ∈ T and i �= j . Let tk be the time instant when
the game enters the rescue mode. Then, the target τm which
was at minimum distance to the attacker a at time instant
tk remains at a constant distance and orientation with other
targets τ ∈ T \τm for the time duration [tk, tk+1).

Proof: We consider the interaction between the players
{τm, τ, d, a}. The Riccati differential equation (14) associated
with player i ∈ {τm, τ, d, a} is given by

Ṗi = −Q̃i + Pi
(
Sτm Pτm + Sτ Pτ + Sd Pd + Sa Pa

)
(67)

where Pi (tk + T ) = Q̃iT . In rescue mode, we have

Q̃τm = Q̃τm T =

⎡⎢⎢⎣
02 02 −I2 I2

02 02 02 02

−I2 02 I2 02

I2 02 02 −I2

⎤⎥⎥⎦

Q̃τ = Q̃τT =

⎡⎢⎢⎣
02 02 02 02

02 02 −I2 I2

02 −I2 I2 02

02 I2 02 −I2

⎤⎥⎥⎦

Q̃d = Q̃dT =

⎡⎢⎢⎣
I2 02 −I2 02

02 I2 −I2 02

−I2 −I2 2I2 02

02 02 02 02

⎤⎥⎥⎦ and

Q̃a = Q̃aT =

⎡⎢⎢⎣
I2 02 02 −I2

02 02 02 02

02 02 02 02

−I2 02 02 I2

⎤⎥⎥⎦.

Using the open-loop Nash equilibrium controls, the state
vector is written as

Ẋ(t) = −(Sτm Pτm + Sτ Pτ + Sd Pd + Sa Pa
)
X(t).

We partition the matrix Pi (t) for i ∈ {τm, τ, d, a} similar to
(27) to obtain⎡⎢⎢⎣

Ẋτm

Ẋτ

Ẋd

Ẋa

⎤⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
r−1
τm

P11
τm

r−1
τm

P12
τm

r−1
τm

P13
τm

r−1
τm

P14
τm

r−1
τ P21

τ r−1
τ P22

τ r−1
τ P23

τ r−1
τ P24

τ

r−1
d P31

d r−1
d P32

d r−1
d P33

d r−1
d P34

d

r−1
a P41

a r−1
a P42

a r−1
a P43

a r−1
a P44

a

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

Xτm

Xτ

Xd

Xa

⎤⎥⎥⎦.

Using the above, we can write

Ẋτm − Ẋτ

= −[(r−1
τm

P11
τm

− r−1
τ P21

τ

)
Xτm + (r−1

τm
P12

τm
− r−1

τ P22
τ

)
Xτ

+ (r−1
τm

P13
τm

− r−1
τ P23

τ

)
Xd + (r−1

τm
P14

τm
− r−1

τ P24
τ

)
Xa
]
.

Since rτm = rτ we have

Ẋτm − Ẋτ = −r−1
τm

[(
P11

τm
− P21

τ

)
Xτm + (P12

τm
− P22

τ

)
Xτ

+ (P13
τm

− P23
τ

)
Xd + (P14

τm
− P24

τ

)
Xa
]
.

(68)

Denoting 	2(t) = (Sτm Pτm + Sτ Pτ + Sd Pd + Sa Pa) we write
(67) for Pτm and Pτ as

Ṗτm = −Q̃τm + Pτm 	2(t) (69)

Ṗτ = −Q̃τ + Pτ	2(t). (70)

Again using the partitioning (27) and premultiplying
the (69) with the matrix [I2 02 02 02] and premultiplying
(70) with [02 I2 02 02] we obtain[

Ṗ11
τm

Ṗ12
τm

Ṗ13
τm

Ṗ14
τm

]
= [

02 02 −I2 I2
]+ [ P11

τm
P12

τm
P13

τm
P14

τm

]
	2(t)[

Ṗ21
τ Ṗ22

τ Ṗ23
τ Ṗ24

τ

]
= [

02 02 −I2 I2
]+ [ P21

τ P22
τ P23

τ P24
τ

]
	2(t).

Taking the difference of the above two differential equa-
tions, we obtain[

Ṗ11
τm

− Ṗ21
τ Ṗ12

τm
− Ṗ22

τ Ṗ13
τm

− Ṗ23
τ Ṗ14

τm
− Ṗ24

τ

]
= [

P11
τm

− P21
τ P12

τm
− P22

τ P13
τm

− P23
τ P14

τm
− P24

τ

]
	2(t)

with terminal conditions P1 j
τm (tk + T ) − P2 j

τ (tk + T ) = 02 for
j = 1, 2, 3, 4. This implies that P1 j

τm (t)− P2 j
τ (t) = 02 for all

t ∈ [tk, tk + T ]. Using this in (68) we obtain Ẋτm − Ẋτ = 02×1.
This implies that the target τm remains constant distance and
orientation with target τ in the rescue mode.

Remark 14: In the rescue mode, all the targets maximize
their distance with the attacker, and minimize their distance
with the defender. So, these two opposing behaviors result
in the distance between the targets τm and τ ∈ T \{τm} to
remain constant. We let weights in the target’s objectives (5) as
Qτd = QτdT = qτdI2 and Qτa = QτaT = qτcI2, with qτd > 0
and qτa > 0. If qτd > qτa then targets give more weightage
on rendezvousing with the defender than evading the attacker,
and vice-versa when the weights satisfy qτd < qτa .

VI. SIMULATION RESULTS

In this section, we illustrate the performance of switch-
ing strategies, developed in Section IV, through numerical
experiments. We consider a six-player game consisting of
four targets, one defender and one attacker. We analyze two
scenarios. In Scenario-1, we verify the results developed in
Section V and analyze the effect of varying the parameters
Qτd = QτdT = qτd I2, Qτa = QτaT = qτaI2 for τ ∈ T and
the planning horizon T . In Scenario-2, we analyze the effect of
switching function parameter κ in (24), the degree of alertness
of the defender, on the outcome of the game.

Scenario-1: Initially, the four targets τ1, τ2, τ3, and τ4 are
located at (1, 1), (−1, 1), (−1,−1), and (1,−1), respectively.
The defender d and the attacker a are located at (−4, 2)
and (4, 4), respectively. The parameter values for the baseline
case are taken as follows: qτd = 1, qτa = 1, Rτ = 400I2,
Qdτ = QdτT = Qaτ = QaτT = I2 for τ ∈ {τ1, τ2, τ3, τ4},
Rd = 300I2, Ra = 200I2, Qda = QdaT = I2, T = 5,
δ = 0.02, σd = σa = 0.5 and κ = 5. For the baseline case,
Fig. 3(a) illustrates the trajectories of the players, and Fig. 3(b)
illustrates the distances between the players. The defender
starts in the rescue mode and switches to interception mode
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Fig. 3. In (a), (e), (f), and (l) dotted lines illustrate the lines joining the minimum distance target and the other targets in the interception mode. Black and red
circles represent the capture zone of the defender and attacker, respectively. In (h) and (i) colored regions indicate different game outcomes based attacker’s
initial location. Attacker’s initial location, 1) in region A, implies the outcome: capture of the target by the attacker; 2) in region B , implies the outcome:
interception of the attacker by the defender; 3) in region C , implies no outcome; and 4) in region D, implies the outcome: rescue of all the targets by the
defender. (a) Scn. 1: trajectories (baseline). (b) Scn. 1: distances (baseline). (c) Scn. 1: slopes (baseline). (d) Scn. 1: with qτd = 4. (e) Scn. 1: with qτa =
1:5. (f) Scn. 1: trajectories with T = 50. (g) Scn. 1: distances with T = 50. (h) Scn. 1: GoK (baseline). (i) Scn. 1: GoK (qτd = 2:25; qτa = 2). (j) Scn. 2:
k = 1. (k) Scn. 2: k = 1 target update. (l) Scn. 2: k = 3.

at tk = 1.42, when the distance between the attacker a and its
minimum distance target τ1 is less than or equal to κσa = 2.5.
The distances between τ1 and other targets τ2, τ3, and τ4

remain constant in the rescue mode verifying Theorem 7.
From Fig. 3(c), the slope of the lines joining the attacker
and the target τ1 is constant at 37.5878◦ in the interception
mode. This verifies Theorem 3. Again, the slopes of the lines
joining the target τ1 with τ2, τ3, and τ4 remain constant at
0◦, 45◦, and 90◦, respectively, verifying Theorem 4. Next,
the planning horizon T satisfies the condition (62) with k = 0,
as T = 5 ∈ (−0.9792, 30.4368). This implies, Assumption 2
holds true. From Fig. 3(b), in the interception mode (after
t > 1.42), the distance between the attacker and the target τ1

decreases with time. Further, the distance between the targets
τ1 with τ2, τ3, and τ4 increases with time. These observations
verify Lemma 1 and Theorem 5. Further, the attacker locks on
to the target τ1 after tk > 1.42, thus verifying Theorem 6. From
Fig. 3(b) the distance between the defender and the attacker
equals the capture radius σd at time tk = 1.78, implying that
the defender intercepts the attacker. From Remark 14, when
qτd > qτa = 1, the inter target distance decreases as the targets
emphasize rendezvousing with the defender more than evading
the attacker. Fig. 3(d) illustrates this observation when qτd is
taken as 2.75, where the outcome of the game results in rescue

of all the targets. When the parameter qτa is set to 1.2 > qτd =
1, then the inter target distance increases as the targets now
emphasize evading the attacker more than rendezvousing with
the defender. Fig. 3(e) illustrates this observation where the
defender intercepts the attacker. Next, we analyze the effect
of varying the planning horizon length T . In the baseline
case, T satisfies the condition (62). Now, we set T = 50
so as to satisfy the other condition (63) with k = 1, that is,
T = 50 ∈ (30.4368, 61.8527). Fig. 3(f) and (g) illustrates the
trajectories of the players and distances between the players,
respectively. From Fig. 3(g), it can be seen that the distance
between the target τ1 with τ2 and τ3 decreases with time in
the interception mode (after tk > 0.82). This observation again
verifies Lemma 1.

Recall from Remark 2 that a GoK can be embedded within
the framework of a GoD. To illustrate this, we vary the initial
location of the attacker in the region (xa, ya) ∈ [−6, 6] ×
[−6, 6], while keeping all other parameter values fixed at
the baseline values, and identify the game outcome using
the switching strategies. Notice, we chose to vary only the
initial location of the attacker as the state space is 12-D.
In Fig. 3(h) the regions A and B indicate initial locations of the
attacker which result in the outcomes capture of the target by
the attacker, and interception of the attacker by the defender,
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respectively. Next, we change the parameters to qτd = 2.25,
qτa = 2. In Fig. 3(i) the regions C and D indicate the initial
locations of the attacker which result in the no outcome, and
rescue of all targets by the defender, respectively. When the
attacker starts in the region D, it is located relatively far
away from the targets. From Remark 14, as qτa = 2.25 > 1,
the targets emphasize on rendezvousing with the defender in
the rescue mode. Hence, for all the initial locations of the
defender in the region D game outcome is a rescue of all the
targets. Other regions can be analyzed in a similar fashion.

Scenario-2: Initially, the four targets τ1, τ2, τ3, and
τ4 are located at (−0.3, 0.6), (0.3, 0.6), (−0.6,−0.6), and
(0.6,−0.6), respectively. The defender d and the attacker a
are located at (3, 3), (0.15, 5), respectively. The remaining
parameters are set according to the baseline case in Scenario-1.
First we set the parameter κ = 1 and the game starts in
rescue mode. Fig. 3(j) illustrates the trajectories of the players.
Fig. 3(k) illustrates the distance between the attacker a and the
targets τ1 and τ2. At the time instant tk = 0.54, the attacker
updates its minimum distance target from τ2 to τ1. The game
terminates at tk = 3.34 with attacker capturing the target τ1.
Next, when the parameter κ is increased to 3, indicating
a highly alert defender, it can be observed from Fig. 3(l)
that the defender switches from rescue mode to interception
mode at tk = 1.62 and eventually intercepts the attacker at
t = 1.86. As the parameter κ only influences the defender’s
ability to switch the operational behavior, the behavior of the
player before the mode switch at time instant tk = 1.62 is
identical to the situation where κ = 1. This implies that
the attacker updates the minimum distance target from τ2 to
τ1 at time instant tk = 0.54 for this case as well. It can
be observed that in the interception mode the lines joining
the minimum distance target τ1 with the other targets remain
parallel verifying Theorem 4. Further, the inter target distance
remains constant in the rescue mode verifying Theorem 7.

VII. EXPERIMENTAL STUDY

In this section, we illustrate the dynamic game model and
the implementation of the Algorithm 1 through experiments
with players taken as DDMRs. We present the robot model,
discuss the experimental setup and illustrate some of the
results obtained in Section V.

A. Robot Model and Feedback Linearization

A DDMR with two motorized fixed standard wheels
and one unpowered omni-directional castor wheel is shown
in Fig. 4(b). Here, {I } denotes the inertial frame of reference
with origin O and basis (X I , YI ). {R} corresponds to the local
frame of reference having position P and basis (X R, YR). The
position of the robot in the inertial frame of reference is given
by (̃xi , ỹi) while θi , i = {T , d, a} corresponds to the angular
difference between frames. The dynamics of robot i is given
by; see [38], [39]

˙̃x i =
(

r φ̇Ri + r φ̇Li

2

)
cos θi , ˙̃yi =

(
r φ̇Ri + r φ̇Li

2

)
sin θi

(71a)

Fig. 4. (a) Illustrates the 4 DDMRs used in the experiments. (b) Illustrates
the DDMR model showing inertial frame of reference with axes (X I , YI ) and
robot’s frame of reference with axes (X R , YR).

θ̇i = r φ̇Ri − r φ̇Li

2l
(71b)

where 2l is the distance between the wheels and r is the
diameter of the wheel. The angular velocities of the right
wheel (φ̇Ri ) and left wheel (φ̇Li ) are the control inputs with
(̃xi , ỹi , θi ) as the pose of the robot in robot frame {R} at time t .
Let vi and ωi be the translational and angular velocities of
the robot, respectively. Then we have vi = (r φ̇Ri + r φ̇L i)/2,
ωi = (r φ̇Ri − r φ̇L i )/(2l). The DDMR dynamics can be
rewritten as the following unicycle dynamics [40, Ch. 2]:

ẋi = vi cos θi , ẏi = vi sin θi , θ̇i = ωi . (72)

However, for implementation purposes, the actual control
inputs φ̇Ri , φ̇Li are obtained from (71) and (72) as

φ̇Ri = 1

r
(vi + lωi ), φ̇L i = 1

r
(vi − lωi ). (73)

The robot dynamics given by (71) is nonlinear, and a
dynamic game formulation is difficult to solve in general. We,
therefore, use feedback linearization [40, Ch. 2] and then apply
our LQDG framework.

Let P be the origin of the robot in robot frame and P �
be the center of mass at a distance L from the origin P as
shown in Fig. 4(b). For robot i ∈ P , the coordinates of P �
are xi = x̃i + L cos θi , yi = ỹi + L sin θi . Upon differentiating
these equations and using (71), (72) and (73) we get

ẋi = vi cos θi−Lωi sin θi , ẏi = vi sin θi + Lωi cos θi . (74)

We define the following state feedback laws:
vi = cos(θi)u1i + sin(θi)u2i (75a)

ωi = 1

L
(− sin(θi)u1i + cos(θi )u2i) (75b)

and then using (75a) in (74) we get

ẋi = u1i , ẏi = u2i . (76)

The LQDG formulation considers the point P � and provides
the Nash equilibrium controls (u1i , u2i ) for robot i . For
implementation, the actual controls (φ̇Ri , φ̇Li ) are obtained
using (75a) and (75b) in (73) as

φ̇Ri = cos(θi)

r

(
u1i + u2i l

L

)
+ sin(θi)

r

(
u2i − u1i l

L

)
(77a)

φ̇Li = cos(θi)

r

(
u1i − u2i l

L

)
+ sin(θi)

r

(
u2i + u1i l

L

)
. (77b)

From (77a) and (77b), it is evident that the feedback
linearization parameter L must be chosen carefully.
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Fig. 5. DDMR controls and orientation. (a) Angular velocities.
(b) Orientation.

B. Experimental Setup and Implementation Details

The experiments employ four DDMRs that serve as an
attacker, a defender, and two targets; see Fig. 4(a). The
distance between the wheels of a robot is 2l = 0.36 m and
the diameter of each wheel is r = 0.13 m. Each of the robots
has access to their initial location information. As the game
progresses, each robot tracks and determines its local position
and orientation with the help of Autonics E40H12 rotary
encoders mounted on its two wheels. This state information
is made available to the remaining players (and vice versa)
over a wireless communication network. The implementation
details of Algorithm 1 are given as follows. At a given time
instant tk , the computation of open-loop Nash equilibrium
strategies over the planning horizon [tk , tk + T ] are performed
using a Raspberry Pi 3 B+ board installed on each robot.
Next, an on-board Arduino UNO is employed to enforce the
control inputs on physical robots for the duration [tk , tk+1).
Finally, a coordination protocol is adopted to synchronize the
time instants tk for the execution of control inputs (77) on
each robot. The feedback linearization parameter L relates the
control inputs obtained from Algorithm 1 to the respective
wheel velocities of the robots in the experimental setup. While
a small value of L is desirable, it results in higher wheel
velocities. Fig. 5(a) illustrates the wheel angular velocities
for three values of L for a step input u1 = 0 and u2 =
0.1 m/s at 1 s. Here, these choices of inputs result in the
maximum possible/worst case rotation of the robot, which
is 90◦. The dotted horizontal lines indicate the maximum
achievable angular velocity of 21 rpm(=2.2 rad/s) for the dc
motors mounted on the robot wheels. When L = 0.04 m,
the maximum wheel angular velocities shoot up to a maximum
of 3.46 rad/s which are impractical during implementation.
Fig. 5(b) illustrates the time taken by the robot to reach
the desired rotation of 90◦. It can be observed that higher
values of L the robot take a longer time to reach the desired
orientation. We thus adopt an intermediate value of L = 0.1 m
that requires a maximum speed of 1.58 rad/s (see Fig. 5(a))
which is well within the achievable speed of the dc motors
(2.2 rad/s). Finally, the moving horizon time instant duration
δ is taken as 0.5 s to accommodate the time spent in inter
robot communication and enforcement of determined wheel
velocities on physical robots.

C. Experiment-1 (With One Target)

In this experiment, we consider one target to illus-
trate the implementation of Algorithm 1. The initial P

Fig. 6. Experiment-1: (a) illustrates the P-trajectories of the attacker,
defender and the target. (b) Depicts the distance between the target and the
attacker. (c) Depicts the slope of the line joining the target and the attacker
in the interception mode. Experiment-2: (d) Illustrates the P-trajectories of
the attacker, defender and the targets. (e) Illustrates the distance between
the minimum distance target (τ1) and the attacker. (f) Illustrates the slope
of the line joining the target (τ1) and the attacker in the interception mode.
(g) Illustrates the slope of the line joining the targets (τ1 and τ2) in the
interception mode. (h) Illustrates the distances between target τ1 with the
attacker a and the target τ2.

(P �)-coordinates of the target, defender and the attacker
are given by (0.4, 3, 0◦) (0.5, 3, 0◦), (3.4, 3, 180◦)
(3.3, 3, 180◦), and (1.8, 4.3, 270◦) (1.8, 4.2, 270◦),
respectively. The third coordinate indicates the orientation of
the robots with respect to positive x-axis. The parameters are
set as δ = 0.5 s, T = 45 s, Rτ = 380I2, Rd = 350I2,
Ra = 300I2, QτdT = QτaT = Qτd = Qτa = QdτT = Qdτ =
QaτT = Qaτ = I2 and Qda = QdaT = 5I2. The capture
radii of the defender and attacker are set as σd = σa = 0.5 m
with κ = 3.2. Since there is only one target the attacker always
pursues this target. As the initial distance between the attacker
and target is greater than κσa the game starts in the rescue
mode. This distance equals κσa at 8 s and the game switches to
interception mode; see Fig. 6(b). The game terminates with the

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 11,2025 at 20:22:59 UTC from IEEE Xplore.  Restrictions apply. 



1418 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 4, JULY 2022

attacker intercepted by the defender at time instant t = 18 s,
that is, when the attacker lies within the capture radius of the
defender; see Fig. 6(a). Fig. 6(c) illustrates the slope of the line
joining the attacker and the target for the duration [8 s, 18 s]
in the interception mode. We observe that the mean slope of
this line is 43.4610◦ with standard deviation 0.8519◦, implying
that the slope is almost constant thus verifying Theorem 3.
Video recording of the experiment is available at the link
https://youtu.be/JX2O4fYb4g4.

D. Experiment-2 (With Two Targets)

In this experiment we consider two targets. The ini-
tial P(P �)-coordinates of the targets (labeled as τ1 and
τ2), defender and attacker are taken as (3.5, 2.5, 270◦)
(3.5, 2.4, 270◦), (6, 2.5, 180◦) (5.9, 2.5, 180◦),
(5.5, 5.5, 180◦) (5.4, 5.5, 180◦), and (3.3, 7, 270◦)
(3.3, 6.9, 270◦), respectively. The initialization parameters
are set as δ = 0.5 s, T = 45 s, Rτ1 = Rτ2 = 480I2, Rd =
350I2, Ra = 280I2, Qτ1d = Qτ2d = Qτ1dT = Qτ2dT = 2I2,
Qda = QdaT = 3I2 with other matrices taken as I2. The
capture radii of the defender and the attacker are taken as
σd = σa = 0.5 with the switching parameter set as κ = 4.
Based on switching condition, initially, the defender attempts
to rescue both the target robots while the attacker pursues its
closest target τ1. In our experiment, the target τ1 remains to
be the minimum distance target for the attacker throughout the
game. The game continues in the rescue mode for 25 s when
target τ1 is at a distance of κσa = 2 meters from the attacker;
see Fig. 6(e). During the interval [25 s, 33 s], that is, during
the interception mode, Fig. 6(f) illustrates the slope of the line
joining between τ1 and a. We observe that the mean value
of the slope is −75.2123◦ with standard deviation 1.2968◦,
implying that the slope is almost constant thus verifying
Theorem 3. Fig. 6(g) illustrates the slope of the line joining the
targets τ1 and τ2. We observe that the mean value of the slope
is 166.8873◦ with standard deviation 1.5289◦, implying that
the slope is almost constant verifying Theorem 4. We notice
that the parameters satisfy (rτ − ra)/(rτ ra) = 0.015 ∈ (0, 1),
and the planning horizon T satisfies condition (63) with k = 1,
as T = 45 ∈ (33.9151, 67.8295). Fig. 6(h) illustrates the
distance between the target τ1 and the attacker decreases with
time and the inter target distance also decreases with time. This
observation verifies Lemma 1. Video recording of the experi-
ment is available at the link https://youtu.be/MKmOo5ssQMY.

VIII. CONCLUSION

In this article, we have analyzed a multiple ATAD differ-
ential game where the defender adaptively switches operating
in rescue and interception modes, and the attacker pursues the
closest target during the course of the game. We model the
interactions within each mode as LQDG and derive open-loop
Nash equilibrium strategies of the players. Then, to enable
switching we use the receding horizon approach to obtain
switching strategies for the players. Under few assumptions
on the problem parameters, we characterized the geometrical
properties of the trajectories of the players. Further, we also
derived conditions under which the attacker locks on to a

target. We illustrated our results with numerical simulations.
Further, we demonstrated the performance of switching strate-
gies using DDMRs and verified our results.

The ATAD model studied in our article can be easily
adapted to incorporate multiple defenders and attackers. For
future work, we plan to investigate different cooperation situa-
tions between the targets and the defender, interactions where
the attacker is also concerned about evading the defender,
various criteria for switching and terminating the game, and
the presence of obstacles.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for providing helpful suggestions which considerably
improved the previous version.

REFERENCES

[1] D. W. Oyler, P. T. Kabamba, and A. R. Girard, “Pursuit–evasion games
in the presence of obstacles,” Automatica, vol. 65, pp. 1–11, Mar. 2016.

[2] D. Li and J. B. Cruz, “Defending an asset: A linear quadratic
game approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 2,
pp. 1026–1044, Apr. 2011.

[3] T. Shima and O. M. Golan, “Linear quadratic differential games guid-
ance law for dual controlled missiles,” IEEE Trans. Aerosp. Electron.
Syst., vol. 43, no. 3, pp. 834–842, Jul. 2007.

[4] R. L. Boyell, “Defending a moving target against missile or torpedo
attack,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-12, no. 4,
pp. 522–526, Jul. 1976.

[5] R. Boyell, “Counterweapon aiming for defense of a moving target,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, no. 3, pp. 402–408,
May 1980.

[6] P. Cardaliaguet, “A differential game with two players and one target,”
SIAM J. Control Optim., vol. 34, no. 4, pp. 1441–1460, 1996.

[7] I. Rusnak, “The lady, the bandits and the body guards—A two team
dynamic game,” IFAC Proc. Volumes, vol. 38, no. 1, pp. 441–446, 2005.

[8] S. Rubinsky and S. Gutman, “Three-player pursuit and evasion conflict,”
J. Guid., Control, Dyn., vol. 37, no. 1, pp. 98–110, Jan. 2014.

[9] R. H. Venkatesan and N. K. Sinha, “A new guidance law for the
defense missile of nonmaneuverable aircraft,” IEEE Trans. Control Syst.
Technol., vol. 23, no. 6, pp. 2424–2431, Nov. 2015.

[10] J. Mohanan, S. R. Manikandasriram, R. H. Venkatesan, and B. Bhikkaji,
“Toward real-time autonomous target area protection: Theory and
implementation,” IEEE Trans. Control Syst. Technol., vol. 27, no. 3,
pp. 1293–1300, May 2019.

[11] A. Ratnoo and T. Shima, “Line-of-sight interceptor guidance for defend-
ing an aircraft,” J. Guid., Control, Dyn., vol. 34, no. 2, pp. 522–532,
Mar. 2011.

[12] A. Ratnoo and T. Shima, “Guidance strategies against defended aer-
ial targets,” J. Guid., Control, Dyn., vol. 35, no. 4, pp. 1059–1068,
Jul. 2012.

[13] T. Shima, “Optimal cooperative pursuit and evasion strategies against a
homing missile,” J. Guid., Control, Dyn., vol. 34, no. 2, pp. 414–425,
2011.

[14] O. Prokopov and T. Shima, “Linear quadratic optimal cooperative
strategies for active aircraft protection,” J. Guid., Control, Dyn., vol. 36,
no. 3, pp. 753–764, 2013.

[15] A. Perelman, T. Shima, and I. Rusnak, “Cooperative differential games
strategies for active aircraft protection from a homing missile,” J. Guid.,
Control, Dyn., vol. 34, no. 3, pp. 761–773, 2011.

[16] V. Shaferman and T. Shima, “Cooperative multiple-model adaptive
guidance for an aircraft defending missile,” J. Guid., Control, Dyn.,
vol. 33, no. 6, pp. 1801–1813, 2010.

[17] M. Pachter, E. Garcia, and D. W. Casbeer, “Differential game of guard-
ing a target,” J. Guid., Control, Dyn., vol. 40, no. 11, pp. 2991–2998,
Nov. 2017.

[18] H. Fu and H. H.-T. Liu, “Guarding a territory against an
intelligent intruder: Strategy design and experimental verification,”
IEEE/ASME Trans. Mechatronics, vol. 25, no. 4, pp. 1765–1772,
Aug. 2020.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 11,2025 at 20:22:59 UTC from IEEE Xplore.  Restrictions apply. 



SINGH et al.: STUDY OF MULTIPLE TARGET DEFENSE DIFFERENTIAL GAMES 1419

[19] B. Vundurthy and K. Sridharan, “Protecting an autonomous delivery
agent against a vision-guided adversary: Algorithms and experimental
results,” IEEE Trans. Ind. Informat., vol. 16, no. 9, pp. 5667–5679,
Sep. 2020.

[20] E. Garcia, D. W. Casbeer, K. Pham, and M. Pachter, “Cooperative
aircraft defense from an attacking missile,” in Proc. IEEE 53rd Annu.
Conf. Decis. Control, Dec. 2014, pp. 2926–2931.

[21] E. Garcia, D. W. Casbeer, and M. Pachter, “Active target defence
differential game: Fast defender case,” IET Control Theory Appl., vol. 11,
no. 17, pp. 2985–2993, Nov. 2017.

[22] E. Garcia, D. W. Casbeer, and M. Pachter, “Active target defense using
first order missile models,” Automatica, vol. 78, pp. 139–143, Apr. 2017.

[23] E. Garcia, D. W. Casbeer, Z. E. Fuchs, and M. Pachter, “Cooperative
missile guidance for active defense of air vehicles,” IEEE Trans. Aerosp.
Electron. Syst., vol. 54, no. 2, pp. 706–721, Apr. 2018.

[24] E. Garcia, D. W. Casbeer, and M. Pachter, “Design and analysis of state-
feedback optimal strategies for the differential game of active defense,”
IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 553–568, Feb. 2019.

[25] M. Pachter, E. Garcia, and D. W. Casbeer, “Toward a solution of the
active target defense differential game,” Dyn. Games Appl., vol. 9, no. 1,
pp. 165–216, Mar. 2019.

[26] M. Pachter, D. W. Casbeer, and E. Garcia, “Linear quadratic formulation
of the target defense differential game,” in Proc. Int. Conf. Unmanned
Aircr. Syst. (ICUAS), Jun. 2019, pp. 1077–1083.

[27] E. Garcia, D. W. Casbeer, and M. Pachter, “Defense of a target against
intelligent adversaries: A linear quadratic formulation,” in Proc. IEEE
Conf. Control Technol. Appl. (CCTA), Aug. 2020, pp. 619–624.

[28] L. Liang, F. Deng, M. Lu, and J. Chen, “Analysis of role switch
for cooperative target defense differential game,” IEEE Trans. Autom.
Control, vol. 66, no. 2, pp. 902–909, Feb. 2021.

[29] Z. E. Fuchs and P. P. Khargonekar, “Generalized engage or retreat
differential game with escort regions,” IEEE Trans. Autom. Control,
vol. 62, no. 2, pp. 668–681, Feb. 2017.

[30] M. Weiss, T. Shima, D. Castaneda, and I. Rusnak, “Combined and
cooperative minimum-effort guidance algorithms in an active aircraft
defense scenario,” J. Guid., Control, Dyn., vol. 40, no. 5, pp. 1241–1254,
May 2017.

[31] S. K. Singh, P. V. Reddy, and K. Sridharan, “Analysing interactions
between a trio of differential drive robots via a differential game formu-
lation,” in Proc. Amer. Control Conf. (ACC), Jul. 2019, pp. 4274–4279.

[32] R. Isaacs, “Differential games I, II, III, IV,” RAND Corp., Santa Monica,
CA, USA, Tech. Rep. RM-1391, 1954, p. 1, no. 141.
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