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Abstract— Reliable communication networks are essential for
the remote operation of automated teams of robotic agents. For
unknown (no prior map) communications-deprived (no existing
communication infrastructure) environments, the robotic agents
must construct the network as the robots move through the
terrain. We present a novel method for automated network
construction tailored for mobile robotic teams that require
communication with a central base station. Our key innovation
is the introduction of a maximin spanning tree structure, which
guarantees a minimum level of communication performance
between nodes. By directly optimizing node placement based on
signal-based metrics, instead of relying on geometric surrogates
like distance and visibility, we also achieve significant decreases
in agent utilization while maintaining coverage for the traversed
area. By using the robotic agents themselves as mobile repeaters
in a communication network, each robotic agent can be in-
dividually assigned to prioritize network connectivity during
critical operations. Numerical simulations on common Multi-
Agent Path Finding benchmarks demonstrate up to a 36%
reduction in the number of required nodes compared to existing
techniques. Furthermore, this work guarantees robust network
connectivity in dynamic environments, outperforming strongest-
neighbor approaches that are vulnerable to link disruptions.
Lastly, hardware tests confirm the robustness of our method in
challenging scenarios encountered in real-world deployments.

I. INTRODUCTION

Many complex missions in dangerous environments, €.g.,
wildfire firefighting, battlefield triage, and search-and-rescue,
will be revolutionized by the use of coordinated multi-
agent robotic systems. Currently, high-performing multiple
robot coordination depends on robotic agents that reliably
communicate information between themselves and other
decision makers. However, many environments lack the
communication infrastructure to inherently support agent
communications. Recent efforts have enabled robotic systems
to construct this network during operations. Yet, ensuring
a minimum quality of service across participants in the
multi-agent system during the construction of the network
remains challenging. We posit that by augmenting network
construction techniques with communication-strength aware
tree search on the network, a quality-ensured ad hoc robotic
network topology can be established to support multi-robot
operations in dangerous environments.

Abandoned buildings or subterranean caverns are exam-
ples of potentially dangerous environments with little or
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Fig. 1. A four-agent robotic convoy builds a communications network in
a communications-deprived environment starting from a base station (black
computer) and ending at a goal location (green circle). To ensure all agents
remain in communication with the base station, the agents leave the convoy
to become communications nodes as the convoy reaches the communications
boundary. As the convoy leaves the communications area supported by the
base station (black), Agent 4 leaves the convoy to act as a communications
node (pane 2), extending the communications-accessible area further. In
subsequent panes, Agent 3 and Agent 2 similarly leave the convoy, enabling
Agent 1 to reach the goal location with communications.

no existing communications infrastructure. Exploration of
these environments was the focus of the Defense Advanced
Research Projects Agency (DARPA) Subterranean Challenge
(SubT) [1]. During exploration, vehicles were often expected
to maintain contact with a central base station to com-
municate information back to a set of human operators.
Multiple SubT performer teams approached this communi-
cation challenge by creating a mobile ad hoc wireless mesh
network (MANET) by dropping “relay nodes” through the
environment they traversed. These relay nodes could estab-
lish communication throughout the environment, but node
placement strategies could result in variable communication
quality or a large number of dropped nodes.

We introduce an automated network topology construction
MANET technique for a small team of agents that aims
to minimize the number of dropped nodes while ensuring
quality communications (see Fig. 1). As the network grows,
whether through the deployment of additional nodes by
different robots or simply due to extended operation, multiple
communication paths to the base station emerge. To ensure
robust connectivity and maximize the minimum link quality
across the diverse paths, we present a complete algorithm



to compute a maximin metric-based spanning tree, which
explicitly quantifies the connection quality of the MANET
between an agent (or formation) and a base station. To
our knowledge, no previous robotic MANET construction
technique enables this capability.

Furthermore, the maximin spanning tree offers a reliable
way to determine the connectivity of any node to the
base station even when one or more intermediate nodes
stop responding. This demonstrates its resilience to node
failures, a key aspect of dynamic network environments. We
demonstrate the effectiveness of our maximin spanning tree
in improving communication quality through simulations on
standard Multi-Agent Path Finding benchmark maps [2] and
physical experiments involving formations of robotic agents.
Therefore, to address the challenges of reliable MANET
construction for teams of mobile robotic agents in dynamic
environments, we contribute:

1) a quality-assured maximin tree-based communication
construction algorithm for MANET generation;

2) a communication relay deployment behavior for net-
work construction in a priori unknown environments.

II. LITERATURE REVIEW

Given the lack of available communications infrastructure
in the DARPA SubT Challenge, multiple performer teams
used network construction techniques to ensure communica-
tions. These techniques would construct a “communication
backbone” that supported robotic operations by “dropping”
communication nodes that extended the effective coverage
of a wireless communication network [3]. For Team CER-
BERUS, a human operator was primarily responsible for
determining the drop points [4]. For Team Explorer, this
“dropping” behavior was primarily controlled by distance-
based limits and line-of-sight (LOS) requirements between
nodes [5]. Given their simplicity, geometric communications
models are quite common for robotic systems, where physi-
cal distance and LOS take precedence over communications-
based signal strength metrics [6]. However, SubT Teams also
considered communication-based metrics, including a Radio
Signal Strength Indicator (RSSI) threshold, as one of the
determining factors for deploying both mobile and stationary
communication nodes [7], [8]. As an alternative to RSSI,
Team CoSTAR used the signal-to-noise ratio (SNR) along-
side other environmental and communication factors [9].

The aforementioned approaches and metrics investigated
in the DARPA SubT Challenge broadly capture aspects of the
sensor coverage problem. For known environments, compu-
tational geometry approaches that frame the sensor coverage
problem as a variant of the Art Gallery Problem (AGP)
have proven extremely successful [8]. To address the com-
putational complexity of the AGP, suboptimal polynomial-
time approximations, such as polygonal decomposition or
partitioning, are frequently employed [10]. Many variants
of the AGP place additional restrictions on the coverage
model used in the AGP, including limited range [10], range
fading [11], or k-visibility through boundaries (i.e., the k-
transmitters problem) [12]. In accordance with the AGP,

these approaches often seek to provide coverage of polyg-
onal areas and may rely on geometry-based communication
models to derive the optimal sensor placements. Such models
lie in contrast to a recent model presented by [6], which
specifies that only certain areas of the state space must
be made “communication-accessible.” Such an approach
provides the unique ability to represent realistic (i.e., non-
polygonal) environments that robotic systems operate in, and
often more closely aligns with the robotic operations (i.e.,
non-coverage problems).

Finally, the relay placement problem does not exist far
outside of previous work in the communications-aware mo-
tion planning space. Many of these works focus on the
development of control or planning algorithms that place re-
quirements on maintaining specific distances (e.g., coverage
area, visibility) or on metrics of network connectivity [13],
[14]. These works are often structured around a fixed network
topology and check for connectivity quality or reachability
using a tree-based analysis. However, these works do not
address the crucial aspect of constructing extensible net-
work topologies that guarantee a minimum communication
strength criterion [15].

ITI. PROBLEM DEFINITION

In this work, we consider a variant of the relay placement
problem detailed in [6]. The objective of the relay placement
problem is to find a minimal set of communication relay
locations needed to form a valid network topology that
covers an area of interest in the environment. In order to
solve the problem, we require: 1) a defined area of interest,
2) a coverage model, which describes the conditions for
communications coverage, and 3) a network model, which
states the set of constraints required to form a valid network
topology. The area of interest (denoted by Z) in the relay
placement model represents an area that is to be made
“communications-accessible” to the agents trying to traverse
or explore the environment [6].

Following [6], consider a planar environment Y C R?
that is divided into object-free space (F) and object-occupied
space. All elements of the environment can be delineated
into one of the two spaces through the use of an occupancy
function F' : W — {0, 1}. Here, “0” denotes that a spatial
element is contained in the object-free space. Using this
categorization, we can define F = {z € W : F(x) = 0}.
Our defined area of interest, Z, is a subset of the object-
free space F. Specifically, it is the region within which
robotic agents will traverse for mission objectives, neces-
sitating uninterrupted communication with the base station.
For convenience, we define another indicator function I :
F — {0,1}, which maps elements of the object-free space
to the area of interest (a value of “1” indicates an area must
be covered). This indicator function enables us to define the
area of interest Z = {xz € F : I(x) = 1}, such as the light
blue region around the planned path in pane 1 of Fig. 1. Note
that W, F,Z are connected spaces.

In order to maintain communications coverage, we con-
sider a communication criterion inspired by our field ex-



periences in the DARPA SubT Challenge [5]. Unlike [6],
which considers an ¢5-boundedness and a visibility con-
straint between a pair of relays to maintain connectivity, our
communication criterion depends directly on the measured
communications strength between a pair of relays. For a total
of N deployable relays, the relay set R = {ry,...,ry} is
defined as a set of 3-tuples: r; = (4,2;,9;) € NX R xR,
where i is the relay index and p; = (x4, ;) € R? is the relay
position. To measure the communication strength between
relays in the relay set, we define a function, Cyy(7;,7;) —
R, that returns a measure of communication strength (e.g.,
SNR, RSSI) between nodes r; € R, and r; € R. If
Cya(ri,rj) = 0, then relays r; and r; are not connected.

We consider a pair of relays r; and r; to be mutually cov-
ered by each other if the observed communication strength,
Cya(ri,7;), is greater than a threshold value: Ciyesn € R
(Cyai(ri,7) > Curesh). For convenience, we extend our
definition of coverage to include positional arguments as
well: Cyu(p,7;) — RT, which captures the signal strength
between a (potentially fictitious) relay placed at location
p € R? and a relay r; € R.

We then construct a network from the relays in the relay
set R by placing the relays at different locations in the object-
free space. Our goal is to create a valid network topology
N ={ry,....,rn}, n < N to cover space Z. Space Z is
coveredif Vo € Z, 3r € N : Cyu(x, ) > Cihresh- Finally, we
define a valid network topology as one that is “connected.”
Simply put, a network is connected if, for all pairs of relays
ri € N,rj € N, there exists a progression of relays starting
from 7; and ending at r; such that relays are sequentially
mutually covered.

In this work, we are interested in enabling communications
between a starting position, x,, and a goal location, x4, in the
environment. We define the optimal planar planning problem
over a state space YV with permissible states J, requiring
zs € F and x, € F. We assume that there is at least one
relay at z;. We define o : [0,1] — W as a sequence of
states (a path) from the set of paths X. The optimal planning
problem is therefore to find a path o* that minimizes a cost
function s : ¥ — R and connects z to z,. We define the
condition for optimality in a general manner as our approach
is not preconditioned on any specific measure. We define the
optimal path as follows:

o = arg migg{s(aﬂ 0(0) = z5,0(1) =z,
YVt e [0,1],0(t) € F}. (1)

In a known environment, where a robotic team aims to
travel between two points while maintaining continuous com-
munication with the base station, the area of interest Z can be
defined as the optimal path o* connecting these points. While
selecting Z = ¢* does not necessarily minimize the number
of communication nodes required, it guarantees connectivity
between the base station and the goal position. Minimizing
the number of communication nodes in a known environment

is a variant of the minimum covering set problem, which is
NP-hard and falls outside the scope of this work [16].

In this work, we do not assume any prior knowledge of the
structure of the environment, specifically the decomposition
of the workspace WV into free or occupied space. Thus, given
a motion planning policy 7(x) that yields a feasible path
o between x; and z,, we propose a network construction
algorithm that procedurally covers the area of interest Z. By
employing a placement strategy that ensures a connected net-
work topology, we enable the robotic agents to traverse the
environment while maintaining continuous communication
with the relay at x.

IV. METHODOLOGY OVERVIEW

A communication network topology can be modeled as
a simple weighted undirected graph G = (V, E). In this
work, the vertices V' of this graph represent physical assets
participating in a network topology A/, including deployed
relays and any communications-enabled agents. These assets
are collectively referred to as “communication nodes.” While
we define any given communication node as v, € V, we split
the set of vertices V' into two unique sets: 1) the set of mobile
“non-deployed” agents P and 2) the set of static “deployed”
nodes S (i.e., V = P U S). For a team of p robotic
agents P = {p1,p2,...,pp} and S = {spy1,Sp12,...,5N}
static nodes in the communication network, we define Jy =
{1,...,p,p+1,...,N}. Here, n € Jy represents a specific
communication node index. We also overload the definition
of v, € V to be equivalent to the physical location of
pn € R2 The communication graph is initialized with v,
as the only starting node, which often represents a central
base station (see Fig. 1).

The edges of the communication graph have an associ-
ated positive weight, e(v;,v;) — RY, v;,v; € V, which
represents a communication link between the vertices. For
example, in Team Explorer’s original approach and in [6],
a positive distance function d(v;,v;) : R? x R? — R, which
measured the physical ¢y distance between two communi-
cation nodes in the graph, was utilized for e(-). Although
physical distance may be used as a surrogate measure of
communication strength, recent advances in communication
technology have enabled the direct use of communication
strength metrics (e.g., RSSI, SNR) for relay placement. For
ease of notation, we denote all communications strength met-
rics between two vertices (v;, v;) using our communication
coverage model notation: Cval(vi77}j) — R+,vi7vj e V.
Note that in this work, as e(-) may take the form of d(-) or
Cya (), the particular use will be indicated as required.

A. Maximin Communications Graph Spanning Tree

In order to ensure that communications are maintained
between the base station and all assets, we design a reactive
node placement behavior that deploys a communications
node in response to an imminent loss of communications
coverage. To ensure the connectivity of all assets v, € V
to the base station (v1), we require the existence of at least
one nodal path in graph G that starts at the base station vy
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Fig. 2. A communications graph (G) on the left and its corresponding
maximin tree (7°) on the right.
and ends at every asset v,, where all relays are progressively
sequentially mutually covered. By defining a path through
G between the base station v; and any vertex v, € V
as m(v1,Vn) = Vi,...,0,.. ., U, v € VU1 # v, We
impose the condition Cyy (v, Vi41) = Cihresh V (Vi, Vig1) €
m(v1,vy), V v, €V where the pairing (v;,v;11) represents
every pair in the sequence of nodes defined by the path 7.
This condition generates a tree structure 7 on G, i.e., T C G,
with vertex v; as the root vertex of the tree. Given this
structure, we choose to simplify the path notation between
node v; and v, into a single argument (7 (v, vy,) = 7(vy,)).
To enforce the single-path communications coverage con-
straint to all mobile agents, we pose 7' as a minimum
spanning tree where the edge weights capture the strongest
“weakest” link (widest-path) on a path between the root
vertex and a non-root vertex in the tree. This is referred
to as the “maximin communications metric.” For each non-
root vertex, v,, connected by a path m(v,) to the root
vertex v, a value Cpe(v1,v,) € RT is calculated using
Algorithm 1. This is done to find the maximum minimum
edge value C,, () for all nodal paths between v; and v, in
the communication graph G. By definition, the spanning tree
T spans all vertices included in the communications graph.
Thus, by ensuring Cpet(v1,Un) > Cthresh, Un € V, We ensure
the existence of a path between v; and v, such that the
minimum edge weight is observed for all edges in the tree.
We utilize several helper data structures to construct the
maximin tree. The first structure is a real-valued n-tuple,
CV € R¥, which represents the minimum communication
value experienced between the n communication node
and the root node wv;. Next, we define another n-tuple,
SPT € {0, 1}V, which tracks the inclusion of vertices in the
spanning tree. Finally, (PATH, TEMP) € Z* tracks the
structure of the tree. All tuple indices correspond to node
indices, with index 1 representing the central base station.
We additionally introduce a supporting routine,
MCV(CV,SPT,V) that parses CV for the maximum
value of a node not already in the tree and returns that
node’s index or —1 if all nodes are already included
in the tree. Algorithm 1 exists in the family of single-
source shortest path algorithms (making it a complete
algorithm). With a naive array implementation, the time
complexity of the presented algorithm is O(|V'|?). This
logic takes the set V' and the root node v; as input where
1 € Jn, determines the maximin tree for the graph,
and then publishes a message identifying the vertices
with a Cpe(:) below cpesn. For convenience, define:
MIN(-) = CV[y] < min(CV{z], Cya(vz,vy)).

Algorithm 1 Maximin Communication Spanning Tree
Define MCST (v, V)
Input v¢, V
Output CV
Require: CV = {0}", CV[1] = oo, SPT = {0}
Require: PATH = {1}V, TEMP = {1}V

1: for 1 € Jy do

> Index 1 is the assumed root

2: if ZjEJN,i;éj Cval(vi,vj) =0 then

3: SPT[i] = 1, CV[i] = 0, PATH[i] = ¢

4 else > if not disconnected
5 x = MCV(CV, SPT, V)

6: if z # —1 then b i.e., still have nodes in tree
7 SPT[z] = 1, PATH[{] = TEMPJ:]

8 for y € Jn do

9: if (Cyai(vg,vy) > 0, SPT[y] = 0, and

10 CV]y] < MIN(-)) then

11: CV[y] = MIN(-), TEMP[y] = «

12: else > if all nodes already in the tree
13: for y € Jn do

14: if SPT[y] = 0 then

15: SPT[y] =1, CV[y] =0,

16: PATH[y] =y > Set self as parent

By running Algorithm 1, the value of C,y(-) may be
monitored to ensure communication capabilities. An example
of the maximin spanning communications tree for a commu-
nications graph is shown in Fig. 2. In Fig. 2a, the vertices
in the communications graph are demonstrated in both green
(v1) and blue (v € (V' \ {v1})), with edges demonstrating
connection strengths greater than cy.sn. The edge colors
reflect varying communications strengths, from low strength
in red to high strength in blue. Using Algorithm 1, a spanning
tree structure can be imposed on the graph presented in
Fig. 2a, which is shown in Fig. 2b.

Algorithm 2 Communication Relay Deployment Behavior
Input P, G, vy, o, t

1: while p, # 0(1) Vp € P do > while no agent at z,
2: Cet ¢+ MCST(v1, V(G))

3 for k € P do

4: if Cinet[k] < Cinresn then

5: agent k deploys a communication relay

6 Move along o > for ¢ seconds

B. Communication Relay Deployment Behavior

For this work, each agent of the multi-agent team may
act as at most one communication node (as opposed to the
carrier agents in [5]). Once the maximin communications
spanning tree is found, the communication relay deployment
behavior in Algorithm 2 periodically checks to ensure that
no agent has a Cp, value below cyesn. Note that if multiple
agents (e.g., 7,5 € P) have a Cy, value below cCyesn, and
if Cya1(Z,7) > Cinresh, then before both agents deploy nodes,
only the agent with the lowest ID (e.g., ¢ < 7 implies agent



1) deploys a relay. This is to ensure that multiple agents do
not redundantly deploy nodes at the same location.

Thus, the experienced automated behavior is that an agent
stops to become a stationary communication repeater (relay)
if its experienced cyyesn Value falls too low. In practice, the
“true” minimum value of cyyesn 1S buffered by some amount,
d € RT, to conservatively approximate a communications
boundary. This ensures that the system does not experience
an unexpected dropout or cause oscillatory behaviors near
the communications boundary (i.e., ¢} o, = Cthresh + 0). The
magnitude of J is highly dependent on the system hardware
and the rate ¢ at which Algorithm 2 is checked.

V. COMPARATIVE SIMULATIONS

To evaluate the performance of our proposed maximin
communication-metric tree construction technique, we con-
ducted simulations within Multi-Agent Path Finding (MAPF)
benchmark environments [2]. These benchmarks are em-
ployed solely to generate realistic communication strength
layouts, enabling the simulation of communication graphs
without relying on prior environmental knowledge. Crucially,
from a communication perspective, we are still operating
within unknown environments. We begin by comparing our
maximin approach with the network construction method
used by Team Explorer, demonstrating that our method yields
a reduction in the number of deployed nodes. We then
demonstrate that the maximin tree’s ability to condense mul-
tiple nodal paths into a single representative value provides
a more informed assessment than a myopic approach.

A. Simulation Environment

In cluttered environments, the effectiveness of communi-
cation networks is significantly impacted by distance and
obstacles. To model this, we adopt an inverse square law for
signal attenuation, approximating signal strength as inversely
proportional to the square of the distance with an additional
linear decline through the obstacles. The communication
model used in this simulation section is given as

1

Cia(r1,m2) = ¢1 - ——5 — C2 - dopst-
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Note that this model is adopted solely for simulation
purposes and is not utilized to preprocess the environ-
ment for communication node placement. The algorithm’s
performance with a real communications system will be
demonstrated in the subsequent hardware trials section. The
simulations in this section assume a value of ¢; = 100 for
obstacle-free space and an additional constant c; = 20 when
considering obstacles. For example, a robot 2 units away
from the source with an obstacle that is 0.5 units thick in
between experiences a signal strength of 25 — 10 = 15 units.

B. Visibility vs. Communications-Metric Graph Construction

This section compares the performance of two communi-
cation network construction approaches: the visibility-based
method used by Team Explorer in SubT [5] (Algorithm 3)
and our maximin communications-metric-based construction
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Fig. 3. A summary of network construction tests demonstrating that

communication-based metrics decreases total node usage.

approach (Algorithm 2). Team Explorer’s approach adds
nodes to graph G depending on their relative distance
and visibility to previously deployed nodes, as detailed in
Algorithm 3. To check visibility, we define a procedure,
LOS(v,p),v € V, which returns “True” if p is within the
line of sight of any static node in V' and otherwise returns
“False.” Furthermore, two hyperparameters: dios € RT
and dnros € R, were defined to capture the maximum
allowable distance (e.g., in an ¢ sense) for a node to be
placed with respect to any previous node in G. The first
parameter, dpos, represents the furthest allowable distance
an agent p is allowed to be from any static vertex v € V(G)
while LOS(v,p) is “True.” Similarly, dnros, represents the
furthest allowable distance an agent p is allowed to be from
any static vertex v € V(G) if LOS(v, p) is “False.” The full
algorithm logic is presented in Algorithm 3.

Algorithm 3 Explorer Communication Graph Construction
Input N, P, dLOS, dNLOS
Require: N > 1, {v1} =S
1: while n < N do
2: for p € P do
s = argmind(s;,p),s; € S > Find closest node
if LOS(S,p), and d(s,p) > dips then
S=SuUp, P=P\{p}, n=n+1
“Establish Node” > Drop Node for SubT
else if d(s,p) > dnLos then
S=SUp, P=P\{p}, n=n+1
“Establish Node” > Drop Node for SubT

> Exit if run out of nodes

R A

We evaluate their effectiveness by navigating a robot
between random start and goal locations. Along the path,
communication nodes are deployed whenever the signal
strength falls below a threshold (ciyresn) Of 10. A key differ-
ence lies in how signal attenuation is modeled. To ensure
connectivity in Algorithm 3, we model a visibility-based
approach that assumes an immediate and complete signal
loss (infinite attenuation, dypos = 0) when the line of sight
between the communications nodes is broken.



To evaluate the performance difference, we conducted
extensive simulations across a diverse set of maps from
the MAPF benchmark dataset. For each map, we randomly
generated 100 different start and goal locations for the
robot, ensuring a comprehensive assessment across varying
environmental configurations and path requirements. These
experiments measure the number of nodes required to main-
tain communication between the start and goal points, with
fewer nodes indicating a more efficient approach. The results
are presented in Fig. 3 where the node construction approach
from Algorithm 2 (in blue) consistently outperforms (has
fewer nodes) the approach from Algorithm 3 (in red). The
largest decrease in required nodes was observed in the
maze-128-128-1 environment, where the average decrease in
deployed nodes across all trials was 36%.

C. Efficacy of Maximin Communication Spanning Tree

Algorithm 1 optimizes the maximin communication metric
across nodal paths, ensuring the weakest link to the base
station exceeds a threshold for higher network quality. While
intuitively beneficial for practical robotic applications, we
found no prior architectures offering comparable network
quality guarantees. To evaluate the efficacy of our algorithm,
we introduce a baseline approach: the strongest neighbor
communication metric (Algorithm 4). This method assumes
an ideal, disruption-free network, where connectivity to the
strongest neighbor directly implies connectivity to the base
station. Such a simplified strongest-neighbor strategy reflects
common practices observed in the SubT Challenge, provid-
ing a comparative benchmark for our maximin algorithm.

Algorithm 4 Strongest Connection Metric
Input v*, G, Cresh
Output IfConnected
Require: MAXCV =0
1: add v* to G
: MAXCV = max(Cyy(v*,v;), Vi € In)
if MAXCV > Cthresh then
IfConnected = True
else
IfConnected = False

AN

To illustrate the algorithmic differences, consider Fig. 4a,
which depicts already deployed nodes (blue) and a base
station (pink). We examine a point (blue star, which repre-
sents v*) along the path between the red and green dots,
which in turn represent z, and x4, respectively. In this
instance, Algorithm 1 computes Cpe(-) > Cunresh indicating
sufficient connectivity for v* to the base station. In contrast
to Algorithm 1’s use of Cpe(-) to determine connectivity,
Algorithm 4 relies on the strongest neighbor link (e.g., node
vg). In Fig. 4a, this also results in a correct connectivity
assessment, which we denote as a true positive.

However, Fig. 4b shows a potential failure scenario. Here,
three nodes, including v,, experience intermittent connection
issues, rendering them nonfunctional. Consequently, the star
node’s strongest link shifts to v, which still exceeds the

threshold. Algorithm 4, in this case, incorrectly infers base
station connectivity via vp, resulting in a false positive
when compared to the true connectivity determined by
Algorithm 1. This example highlights the vulnerability of
the strongest neighbor approach to link disruptions, which
the maximin tree is robust against.

=

(a) All nodes are functional
Fig. 4. Comparison of Algorithm 1 and Algorithm 4.

(b) Three nodes (X) are disconnected

To rigorously evaluate the performance of Algorithm 1
and Algorithm 4, we conducted an extensive study across
multiple MAPF benchmark maps, each with randomized
node configurations. Specifically, we generated 100 random
pairs of start and goal locations (z, and x4) within each map
and tested both algorithms at discrete points between them.
Each environment is seeded with 30 relays that form a valid
connected network, and we simulated network disruptions
by randomly disconnecting 3 of the 30 nodes. We also
randomly select a base node from the remaining set of
non-disconnected relays. This methodology allowed us to
assess the effectiveness of the algorithms across a diverse
range of dynamic network conditions. We quantified perfor-
mance by calculating the rate of false positives produced
by Algorithm 4 relative to the total positives identified
by Algorithm 1. This metric represents the percentage of
instances where Algorithm 4 yields an incorrect connectivity
assessment.

The results of this study are presented in Fig. 5. Notably,
in the den520d map, Algorithm 4 exhibited zero errors,
highlighting its potential for significantly faster computa-
tion compared to Algorithm 1 in static environments. This
observation aligns with the algorithm’s adoption in prior
work with static network assumptions. However, across the
broader dataset, we observed a substantial increase in false
positives, reaching up to 100% in some cases. This dramatic
decline in performance underscores the necessity of a base-
station-centric critical strength-aware communication tree,
as provided by Algorithm 1, for robust decision-making in
dynamic and mission-critical scenarios.

VI. HARDWARE TRIALS

The network construction algorithms presented in Sec-
tion IV were tested on a convoy of robotic agents in the
context of an automated patrol mission through a hospital-
like building without any available network infrastructure.
The testing environment is shown in Fig. 6, which depicts the
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Fig. 5.  Multiple MAPF environments demonstrate advantages in using
Algorithm 1 over Algorithm 4.

floor plan of the building as it was mapped by the agents dur-
ing the hardware trials. Figure 6 shows that this environment
consists mainly of two long corridors (viewpoints 1 and 3), a
sharp turn (viewpoint 2), and an exit point to the exterior of
the test facility (viewpoint 4). In all experiments, the convoy
started at the operator base station near viewpoint 1. The
path o was implicitly constructed using a frontier exploration
algorithm governed by a greedy heuristic to minimize the
total distance traveled [5], [17].

Base Station (Start) Location

“ . Exit (Goal) Location

Traveled Path

Viewpoint

Fig. 6. Hardware Trial Environmental Overview

The convoy consisted of three mobile robotic agents
(Fig. 1) that were all equipped with a communications radio.
Each agent’s radio enabled it to talk to all other agents or
the base station if the corresponding radio was also in range.
Constant communication between the base station and the
convoy was ensured by procedurally building a communica-
tions network using Algorithm 2 and Algorithm 3.

A. Visibility vs. Communications-Metric Graph Construction

The results of the comparative simulations reflect that
distance-based metrics may perform poorly in complex envi-
ronments with high densities of line-of-sight blocking terrain
features. For the given environment in this set of experiments,
a singular limit could be observed such that the multi-agent
team of robots would have at least one agent reaching the
egress point without LOS constraints. This limit is denoted
dmin (shown in Fig. 6), and was measured to be at least
75 [m] (thllS, dLOS = dNLOS = dmin =75 [m] for the

given tests). Any value above 75 [m] would allow the agents
to reach the goal. However, given a suboptimal parameter
choice for dp ps or dnros, the mobile agent team was unable
to reach the exit point of the facility. This is reflected in
Fig. 7a. Here, a suboptimal choice was selected (d ps = 65
[m], dxpos = O [m]) which caused agent “RC1” and agent
“RC3” to stop at points where the system lost line-of-sight
to the previous nodes. Note that line-of-sight to the base
station relay was available in the starting hallway. In contrast,
leveraging Algorithm 1 with a communication-based metric
(selected as falling below a “‘signal strength” threshold) pro-
vides a different spatial distribution of deployed agents. Note
that the selection of the communication-based metric also
required empirical testing to determine the hyperparameter
threshold, but did allow for the dropping of the line-of-sight
constraint, which is advantageous in complex geometries.

B. Failed Node Robustness Test

In addition to the performance tests, additional robustness
tests were performed to handle disconnected or “failed”
nodes. Here, a failed node does not communicate with the
base station but can communicate with the agents in the
convoy. On one agent, “RC3,” the maximin communications
spanning tree is used to construct the network (Algorithm 2)
while “RC2” uses Team Explorer’s strategy (Algorithm 3).

The position of the failed node in the environment is
shown in Fig. 8 and is labeled “RC1.” The placement of this
node satisfies both the distance and LOS constraints required
for Algorithm 3. Without the maximin communications span-
ning tree, “RC2” does not stop until the position marked

s “RC2” in Fig. 8, as this is where the communication
range (determined by di og) is reached. When “RC2” moved
beyond the “RC1” position, communication with the agent
began to fail and became intermittent. A post-trial analysis
shows that the agent which stopped at the “RC2” position
had almost half the “signal strength” needed to communicate
with the base station (Ciyresh). However, with the presence of
the maximin communications spanning tree, “RC3” observed
this drop in signal strength near the “RC1” position, causing
it to deploy as a communications node. That threshold was
reached at the position listed as “RC3” in Fig. 8. Thus,
the presence of the maximin communications spanning tree
restrained agent “RC3” from leaving the communications-
accessible area and ensured that it was not tricked by the
disconnected node.

VII. CONCLUSIONS

This manuscript presents a maximin communications
spanning tree approach for ensuring communications be-
tween a multi-agent robotic team and a base station. We
demonstrate the capability of the approach in both simulation
and hardware to generate network topologies in complex en-
vironments, and demonstrate how the maximin communica-
tions spanning tree provides additional robustness to discon-
nected “failed” nodes in the environment. Immediate future
works relate primarily to two areas: 1) map-predictive com-
munication network construction and 2) the development of
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The testing environment for all hardware experiments. Note that each camera view taken from the multi-agent team is also labeled on the map.

The closest red arrow is an approximate position for the image. The image was taken in the direction indicated by the arrow’s head. Hardware evaluations
comparing Algorithm 3 and Algorithm 1. Figure Fig. 7a reflects the end positions for the agents using Algorithm 3 and a distance-based metric. Figure
Fig. 7b reflects the end positions for the agents using Algorithm 1 and a communications-based metric.
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Fig. 8.
affects each agent differently. Agent “RC2” does not realize that it cannot
communicate with the base station and continues out of range. This contrasts
with agent “RC3,” which recognizes the communication failure and stops.

communication-quality-constrained exploration-based plan-
ning and control algorithms for robotic convoying. While the
problem definition discussed in Section III dismissed the ef-
fectiveness of minimum set coverage approaches for robotic
systems, the use of machine learning to predict environment
layout and communications strengths would be a vital step
towards generating more optimal relay placements. Works
such as Tatum [8] began this effort, but more powerful en-
vironmental prediction algorithms (e.g., MapEx [18]) could
provide a large improvement over Tatum’s baseline. Further-
more, communication-quality-constrained motion planning
and control for exploration has been explored in prior works,
but its realization on hardware needs further development and
testing. Specifically, utilizing perception systems that predict
drops in communication quality (e.g., observing known-
communication blocking materials or geometries) and then
enforcing constraints in the reachable space of a low-level
controller provides a unique online benefit towards ensuring
the system never leaves communication range.
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