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Abstract— The moving target traveling salesman problem
with obstacles (MT-TSP-O) seeks an obstacle-free trajectory
for an agent that intercepts a given set of moving targets,
each within specified time windows, and returns to the agent’s
starting position. Each target moves with a constant velocity
within its time windows, and the agent has a speed limit no
smaller than any target’s speed. We present FMC*-TSP, the
first complete and bounded-suboptimal algorithm for the MT-
TSP-O, and results for an agent whose configuration space is
R3. Our algorithm interleaves a high-level search and a low-
level search, where the high-level search solves a generalized
traveling salesman problem with time windows (GTSP-TW) to
find a sequence of targets and corresponding time windows for
the agent to visit. Given such a sequence, the low-level search
then finds an associated agent trajectory. To solve the low-level
planning problem, we develop a new algorithm called FMC*,
which finds a shortest path on a graph of convex sets (GCS)
via implicit graph search and pruning techniques specialized
for problems with moving targets. We test FMC*-TSP on 280
problem instances with up to 40 targets and demonstrate its
smaller median runtime than a baseline based on prior work.

I. INTRODUCTION

Visiting moving targets in environments with obstacles is
necessary in applications ranging from underway replenish-
ment of naval ships [1] to delivering spare parts to spacecraft
on-orbit [2]. The shortest path problem of visiting multiple
targets by an agent is often modeled as a traveling salesman
problem (TSP) in the literature [3], [4]. Given the cost
of travel between any pair of targets, the TSP aims to
find a sequence of targets to visit such that each target is
visited exactly once and the sum of the travel costs for the
agent is minimized. The moving target TSP (MT-TSP) is
a generalization of the TSP where the targets are mobile,
and may only be visited within specific time windows. The
MT-TSP seeks a sequence of targets as well as a trajectory
through space for an agent that intercepts each target. When
the agent must avoid static obstacles, we have the moving
target TSP with obstacles (MT-TSP-O) (refer to Fig. 1).

As with other motion planning problems, two desirable
properties in an algorithm for the MT-TSP-O are complete-
ness and optimality. No existing MT-TSP-O algorithm has
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Fig. 1. Targets depicted as stars move along piecewise-linear trajectories.
Portions of a target’s trajectory within time windows are highlighted in bold
colors. Agent trajectory shown in blue begins and ends at depot, intercepting
each target within one of its time windows while avoiding obstacles.

both properties. Even finding a feasible solution to the MT-
TSP-O is NP-complete [5] due to the presence of time
windows, making completeness difficult to guarantee. Fur-
thermore, since the MT-TSP-O generalizes the TSP, solving
the MT-TSP-O optimally is NP-hard. Our prior work [6]
developed a complete algorithm for the MT-TSP-O in R2

using a generalization of a visibility graph. The completeness
of [6] is limited to the plane, where a shortest path in a
visibility graph is also a shortest path in continuous space.
This property fails in three dimensions1. Note that with MT-
TSP-O, path length affects completeness because of timing
constraints: if an agent takes an excessively long path from
its starting point to a destination point on a target’s trajectory,
the agent may not reach its destination point by the time the
target gets there, even if doing so is possible.

In this paper, we propose the first complete and bounded-
suboptimal algorithm for the MT-TSP-O in three-dimensions.
Our algorithm interleaves a high-level search for a sequence
of targets and associated time windows, and a low-level
search for a trajectory intercepting a given target/time win-
dow sequence. The low-level search uses a graph of convex
sets (GCS) [7], rather than the visibility-based graph in [6],

1As in figure 1, the agent’s path from the blue target to the green target
wraps around an edge of an obstacle rather than a vertex. A visibility graph
only considers paths that move between obstacle vertices.



because the visibility graph approach is limited to the plane.
In particular, the low-level search extends existing techniques
for implicit graph search on a GCS [8], [9], using focal
search [10] to enforce bounded-suboptimality and additional
limits on arrival times to intermediate targets to prune
suboptimal solutions. Therefore, one of our contributions is a
new GCS-based algorithm for intercepting a given sequence
of moving targets in minimum-time, which we call FMC*
(Focal search for Moving targets on a graph of Convex sets).
We call our overall algorithm FMC*-TSP. We test FMC*-
TSP against a baseline based on prior work that samples
the trajectories of targets into points. The baseline is not
complete or bounded-suboptimal, and often needs a large
number of samples to find a solution. As we increase the
number of targets, FMC*-TSP often finds solutions for the
MT-TSP-O more quickly compared to the baseline while
satisfying a specified suboptimality bound.

II. RELATED WORK

Several algorithms exist for the MT-TSP without obstacles,
ranging from complete and optimal methods [11]–[14] to
incomplete and suboptimal heuristic methods [2], [15]–[22].
The complete and optimal methods assume trajectories of
targets are linear or piecewise-linear; our work makes the
same piecewise-linear assumption. In the presence of obsta-
cles, there are two related works. [23] represents trajectories
of targets using sample points and requires a straight line
agent trajectory between each sample point: this method is
neither complete nor optimal. Our prior work [6] develops a
complete (but not an optimal) algorithm for the MT-TSP-O,
for planar instances with piecewise-linear target trajectories.

A complete and optimal method of planning trajectories in
non-planar environments is to plan a shortest path on a graph
of convex sets (GCS) [7], [24]. [7] finds the shortest path on a
GCS via a mixed integer convex program (MICP), which can
be solved exactly to guarantee completeness and optimality,
or solved via the relaxation-then-rounding method from [24]
that sacrifices guarantees to improve runtime. IxG* [8] and
GCS* [9] replace the MICP in [7] with implicit graph search,
allowing operations on larger graphs. The low-level planner
in our work also implicitly searches a GCS, but exploits
the structure of minimum-time problems with moving targets
and time windows to accelerate the search.

III. PROBLEM SETUP

Let Qfree be the obstacle-free configuration space in Q =
R3. For some final time tf , let the agent’s trajectory be τa :
[0, tf ] → Q. For all t ∈ [0, tf ], we require τa(t) ∈ Qfree,
τa(0) = pd (the position of the depot), and that τa is speed
admissible, i.e. it never exceeds the agent’s speed limit vmax.

Denote the set of moving targets as I = {1, 2, . . . , |I|}.
Each target i ∈ I is associated with a set of time windows,
Wi = {[t1i , t̄1i ], [t2i , t̄2i ], . . . , [t

|Wi|
i , t̄

|Wi|
i ]}. tji and t̄ji denote

the start and end time of target i’s jth time window respec-
tively. Let the trajectory of target i be τi : R → Q. We
assume within each of target i’s time windows, τi lies in
Qfree and has speed no larger than vmax. We also assume

τi has constant velocity within each time window in Wi,
though the velocity may differ from one window to another.

We define a target-window uj
i as the pairing of target i

with its jth time window, i.e. uj
i = (i, [tji , t

j
i ]). We also

define a target-window associated with the depot, ud = u1
0 =

(0, [0,∞)). Here, we treat the depot as a fictitious target 0
with τ0(t) = pd for all t, and with W0 = {[0,∞)}. Let
Ti = {i} × Wi be the set of target-windows for target i.
For each target-window uj

i , we let Tar(uj
i ) = i, t(uj

i ) = tji ,
t̄(uj

i ) = t̄ji , and Traj(uj
i ) = τi. An agent trajectory τa

intercepts target-window u at time t if ua(t) = Traj(u)(t).
A tour is a sequence of target-windows containing exactly

one target-window per target, beginning and ending with ud.
A partial tour is a sequence of target-windows beginning
with ud and containing at most one target-window per target,
not necessarily ending with ud. For a partial tour Γ, |Γ| is
the length, Γ[i] is the ith element2, and Γ[−1] is the final
element. Additionally, the length-i prefix of Γ is Γ[: i] =
(Γ[1],Γ[2], . . . ,Γ[i]). A partial tour Γ visits target i if for
some u ∈ Ti, u ∈ Γ. An agent trajectory τa executes a partial
tour Γ if τa intercepts the target-windows in Γ in order. The
MT-TSP-O seeks a tour Γ, an agent trajectory τa, and a final
time tf such that τa executes Γ, and tf is minimized. In this
work, we assume that we are given a suboptimality factor w,
such that if the optimal value of tf is t∗f , then our returned
solution (Γ, τa, tf ) satisfies tf ≤ wt∗f .

IV. FMC*-TSP ALGORITHM

An overview of FMC*-TSP is shown in Alg. 1. FMC*-
TSP searches for a tour on a target-window graph (Section
IV-A), where the nodes are target-windows, and an edge
connects target-window u to v if the agent can intercept u,
then v, in the absence of obstacles. The search for a tour
is posed as a generalized traveling salesman problem with
time windows (GTSP-TW) (Section IV-B). For every tour
generated by the GTSP-TW solver, FMC*-TSP performs a
low-level search on a GCS for a trajectory executing the
tour (Sections IV-C to IV-D). The low-level search updates
an incumbent solution (Γinc, τ inca , tincf ) (Line 2) with the
lowest-cost trajectory found so far. Whenever the low-level
search finds a trajectory executing a tour Γ, it adds Γ to the
forbidden set Hforbid (Line 3), forbidding the GTSP-TW
solver from producing Γ again. On the other hand, if the
low-level search fails to find a trajectory for a tour Γ, it adds
the shortest prefix of Γ that cannot be executed to Hforbid.

FMC*-TSP ensures bounded-suboptimality by terminating
only when the incumbent satisfies tincf ≤ wLB, where LB is
a lower bound on the optimal cost t∗f . LB is the minimum of
two values, LBH and LBL. LBH is a value maintained by
the GTSP-TW solver, lower bounding the cost of any tour the
solver can currently produce. LBL is a value updated by the
low-level search. In particular, whenever the low-level search
produces a trajectory for a tour Γ, it also produces a lower
bound on the cost of executing Γ, and LBL is continually
updated to be the lowest of these lower bounds.

2We use 1-based indexing, i.e. the first element of Γ is Γ[1]



Finally, for pruning purposes, FMC*-TSP maintains a
dictionary called D. The keys for D are tuples (S, u), where
S ⊆ I, and u is a target-window. The value for a key (S, u)
is the cost of the best trajectory found so far intercepting the
targets in S, in any order, and terminating by intercepting
u. We define the function Key(Γ), which converts a partial
tour Γ into a key (S,Γ[−1]), where S contains the targets
visited by Γ. Whenever we generate a trajectory for a partial
tour Γ, we constrain the trajectory to execute Γ within time
D[Key(Γ)] and prune Γ if this is infeasible. If we attempt
to access D[(S, u)] for some key (S, u) not contained in D,
we assume D[(S, u)] evaluates to t(u).

Algorithm 1: FMC*-TSP

1 Gtw = ConstructTargetWindowGraph ();
2 (Γinc, τ inca , tincf ) = (NULL,NULL,∞);
3 Hforbid = {};
4 LBL =∞;
5 D = dict();
6 SolveGTSP-TW (Gtw, LowLevelSearch);
7 if tf =∞ then return INFEASIBLE;
8 return (Γinc, τ inca , tincf );

A. Target-Window Graph

We define a graph Gtw = (Vtw, Etw), called a target-
window graph. Vtw is the set of nodes, containing all target-
windows. Etw is the set of edges. To define the edges, we
need the following quantities:

Definition 1. Given target-windows u and v, the obstacle-
unaware latest feasible departure time luv is the maximum
t ∈ [t(u), t(u)] such that a speed-admissible trajectory exists
intercepting u at some t0 ∈ [t(u), t(u)], then v at t, in the
absence of obstacles. If no such trajectory exists, luv = −∞.

Definition 2. Given target-windows u and v and departure
time t0 from u, the obstacle-unaware earliest feasible arrival
time euv(t0) is the minimum t ∈ [t(v), t(v)] such that a
speed-admissible trajectory exists intercepting u at time t0
then v at time t, in the absence of obstacles. If no such
trajectory exists, euv(t0) =∞. Additionally, when we write
euv without any argument, we imply the argument t0 = t(u).

Definition 3. Given target-windows u and v, the
obstacle-unaware shortest feasible travel time suv equals
mint0∈[t(u),t(u)](euv(t0)− t0). If euv =∞, suv =∞.

luv , euv , and suv have closed-form expressions [25]. For
all pairs of target-windows (u, v) with Tar(u) ̸= Tar(v),
we first compute luv; if luv ̸= −∞, we compute euv and
suv , then store luv, euv and suv in an edge (u, v) ∈ Etw. If
luv = −∞, then (u, v) /∈ Etw. For edge e = (u, v) ∈ Etw,
let le = luv , ee = euv and se = suv .

B. GTSP-TW

We solve a GTSP-TW on the target-window graph for
a tour, using the mixed integer linear program (MILP)
formulation from [26], modified to incorporate le, ee, and
se values. The decision variables consist of a binary variable

xe ∈ {0, 1} for each edge e ∈ Etw, indicating whether e is
traveled in the tour, as well as an arrival time ti for each
i ∈ I ∪ {0}. For a target-window v, δ−(v) is the set of
edges entering v, and δ+(v) is the set of edges leaving v.
Let δ(i, j) =

⋃
u∈Ti

⋃
v∈Tj

(δ+(u) ∩ δ−(v)). The MILP is given

in Problem 1.

min
{xe}e∈Etw ,

{ti}i∈I∪{0}

t0 (1a)

s.t.
∑
v∈Ti

∑
e∈δ−(v)

xe = 1 ∀i ∈ I ∪ {0} (1b)

∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe ∀v ∈ Vtw (1c)

∑
v∈Ti

∑
e∈δ−(v)

eexe ≤ ti ≤
∑
u∈Ti

∑
e∈δ+(u)

lexe ∀i ∈ I

(1d)

[i ̸= 0]ti − tj +
∑

e∈δ(i,j)

sexe ≤
∑
u∈Ti

∑
e∈δ+(u)

lexe

−
∑
v∈Tj

∑
e∈δ−(v)

eexe −
∑

e∈δ(i,j)

(le − ee)xe

∀i ∈ I ∪ {0}, j ∈ I (1e)

ti +
∑

e∈δ−(ud)

sexe ≤ t0 ∀i ∈ I (1f)

∑
e∈edges(Γ)

xe ≤ |Γ| − 2 ∀Γ ∈ Hforbid (1g)

(1a) minimizes the arrival time at the depot. (1b) requires the
tour to visit all targets and the depot. (1c) requires that if the
tour arrives at a target-window v, the tour also departs from
v. (1d) expresses that the arrival time at target i is no earlier
than ee for the edge e chosen to arrive at i, and that the arrival
time is no later than le for the edge e chosen to depart from
i. (1e) ensures that if a tour contains j immediately after i,
the arrival time at j is no earlier than the arrival time at i plus
se for the edge chosen to travel from i to j. In (1e), [i ̸= 0]
equals 1 if i ̸= 0 and equals 0 otherwise, enforcing departure
from the depot at t = 0. (1f) enforces a similar constraint to
(1e) for traveling to the depot. (1g) requires that any partial
tour Γ in Hforbid is not a prefix of a returned solution3.

C. Low-Level Search

When solving the MILP 1, a standard solver will produce
several tours. For each tour Γ, the low-level search (LLS)
attempts to generate a trajectory executing Γ, as well as a
lower bound g(Γ) on the cost to execute Γ. LLS does so by
computing a trajectory and lower bound for each prefix of
Γ that it has not seen before, in increasing order of prefix
length, using FMC* (Section IV-D). If trajectory computation
fails for a prefix Γ[: i] (i.e. FMC* returns g(Γ[: i]) = ∞),
we add Γ[: i] to Hforbid and return to the high-level search.

3For a partial tour Γ = (u1, u2, . . . , u|Γ|), we define edges(Γ) =
{(u1, u2), (u2, u3), . . . , (u|Γ|−1, u|Γ|)}



If we successfully generate a trajectory for Γ, we update the
incumbent with Γ, and we update LBL using g(Γ).

Algorithm 2: LowLevelSearch(Γ)
1 for i in (2, 3, . . . , |Γ|) do
2 if SawBefore (Γ[: i]) then continue;
3 (g(Γ[: i]), τa, tf ) = FMC* (Γ[: i]);
4 Hforbid ← Hforbid ∪ {Γ[: i]};
5 if g(Γ[: i]) =∞ then return ;

6 (Γinc, τ inca , tincf )← (Γ, τa, tf );
7 LBL ← min(LBL, g(Γ));

D. FMC*

The low-level search invokes FMC* with a partial tour Ω
(the same as Γ[: i] in Alg. 2) and seeks a trajectory executing
Ω, as well as a lower bound on its execution cost g(Ω).
Before invoking FMC* for the first time, we decompose
the obstacle-free configuration space Qfree into convex
regions {A1,A2, . . . ,Anreg}. Since the obstacle maps in our
experiments are cubic grids, we choose to decompose Qfree

into axis-aligned bounding boxes, but other decomposition
methods, e.g. [27], can be used as well. We then define a
graph of convex sets (GCS), denoted as Gcs = (Vcs, Ecs),
where Vcs is the set of nodes and Ecs is the set of edges. Each
node in Vcs is a convex subset of Q×R, i.e. a set of config-
urations and times. For each convex region A decomposing
Qfree, we have a region-node XA = A× [−∞,∞] in Vcs.
For each target-window u, we have a window-node Xu ∈ Vcs
containing the positions and times along Traj(u) within
time interval [t(u), t̄(u)]: this set of positions and times is a
line segment in space-time, and thereby a convex set [11].
We say an agent trajectory intercepts a window-node if it
intercepts the associated target-window. An edge connects
X to X ′ if X ∩ X ′ ̸= ∅. We call a sequence of GCS nodes
P a path. Similar to the notation in Section III, |P | is the
length of P , P [j] is the jth element of P , and P [−1] is
the final element of P . We say path P is a solution path
for Ω if (XΩ[1],XΩ[2], . . .XΩ[−1]) is a subsequence of P .
FMC* interleaves the construction of a solution path and the
optimization of an associated trajectory.

FMC* finds a path and trajectory using focal search. The
search maintains two priority queues, OPEN and FOCAL,
each containing paths. Each path P ∈ OPEN has an f -value
f(P ), lower bounding the cost of a solution path beginning
with P . We construct f(P ) as the sum of a cost-to-come
g(P ) and a cost-to-go h(P ). OPEN prioritizes paths with
smaller f -values. Let fmin(OPEN) = minv∈OPEN f(v), and
let fmin(OPEN) = ∞ if OPEN is empty. fmin(OPEN)
is a lower bound on the cost of executing Ω. When
FMC* returns, along with returning a trajectory, it returns
fmin(OPEN), which becomes g(Γ[: i]) in Alg. 2. In addi-
tion to its f -value, a path P also stores an obstacle-free,
speed-admissible agent trajectory LTraj(P ) and a time
LTime(P ), such that LTraj(P ) intercepts all window-
nodes in P in order, and LTime(P ) is the interception time
of the last window-node in P (”L” stands for last).

The priority queue FOCAL stores all P ∈ OPEN with
f(v) ≤ wfmin(OPEN). Each P ∈ FOCAL also has a prior-
ity vector f⃗pr(P ) = [unv(P ), g + wh(P )]T , where unv(P )
is the number of target-windows in Ω without an associated
GCS node in P , i.e. unvisited by P . g+wh(P ) is the priority
function from weighted A* [28]. FOCAL prioritizes nodes
with lexicographically smaller priority vectors, i.e. it prefers
paths with fewer unvisited target-windows, and for two paths
with the same number of unvisited target-windows, FOCAL
prioritizes them in the same way as weighted A*.

When invoking FMC* in Alg 2, note that if |Ω| > 2, we
must have already computed a trajectory for Ω[: |Ω| − 1].
We can reuse the OPEN list from this previous search to
speed up the current one (Line 5), and this reuse is described
in Section IV-D.1. If |Ω| = 2, we cannot reuse a previous
OPEN list, so we initialize OPEN as empty, then add a path
to OPEN containing only the depot (Lines 1-3).

Each search iteration pops a path P from FOCAL, then
obtains NextWindowIndex(Ω, P ), which is the smallest
index n such that XΩ[n] /∈ P . Next, for any j ∈ {n, n +
1, . . . |Ω|}, we check if Key(Ω[: j]) is in D, and if so, we
check if D[Key(Ω[: j])] is equal to the start of the time
window for Ω[j] (Line 12). If so, there is no use finding
a trajectory for Ω[: j], and we prune P 4. If we have not
pruned P , we obtain the successor nodes of P . X ′ ∈ Vcs is
a successor node of P if the following conditions hold:

1) (P [−1],X ′) ∈ Ecs
2) X ′ does not occur in P after the final window-node in

P , ensuring that descendants of P will not visit a node
more than once between visits to two window-nodes

3) If X ′ is a window-node, X ′ = XΩ[n]

From each successor node X ′ of P , we create a successor
path P ′ by appending X ′ to P .

We now describe how to compute f(P ′) and f⃗pr(P
′).

The procedure is illustrated in Fig. 2. We first obtain
the index of the final window-node in P : call this in-
dex j. We then construct an auxiliary path, Paux =
(P [j], P [j + 1], . . . , P [−1],Q × R). Next, we optimize a
speed-admissible trajectory, parameterized as a sequence of
contiguous linear trajectory segments (τ1, τ2, . . . , τ |Paux|)
and a sequence of segment end times (t1, t2, . . . , t|Paux|),
such that t|Paux| is minimized, segment k lies entirely in
set Paux[k], τ1(LTime(P )) = LTraj(P )(LTime(P )), and
τ |Paux|(t|Paux|) = Traj(Ω[n])(t|Paux|). This optimization
is the same as [8], eqn. 2, with the additional initial and
terminal constraints. If the optimal final time t|Paux| (denoted
as t on Line 15) is larger than D[Key(Ω[: n])], we prune P ′.
Otherwise, we note that if we concatenate LTraj(P ) with
segments k = 1 to k = |Paux| − 1, we obtain an obstacle-
free trajectory (denoted as τ ′ on Line 15). The cost of τ ′ is
t|Paux|−1, and we let g(P ′) = t|Paux|−1. If P ′[−1] = XΩ[n],
τ ′ is a new trajectory τΩ[:n] executing Ω[: n], and we update
D[Key(Ω[: n])] (Line 18) to prune future trajectories worse
than τΩ[:n]. Next, we note that τ |Paux| travels in a straight

4In practice, to account for numerical tolerances, we use the condition
D[Key(Ω[: j])] ≤ t(Ω[j]) + ϵ, with ϵ = 10−8.



line to position Traj(Ω[n])(t|Paux|), ignoring obstacles,
terminating at time t|Paux|, denoted as t on Line 15. Lines 23-
26 extend τ |Paux| to intercept all remaining target-windows
Ω[j] in Ω by successively computing the obstacle-unaware
earliest feasible arrival time from one target-window to the
next. If the arrival time at any Ω[j] is larger than D[Key(Ω[:
j])], we prune P ′. Otherwise, f(P ′) is the arrival time at
Ω[−1], and h(P ′) = f(P ′)− g(P ′), letting us compute f⃗pr.

Algorithm 3: FMC* (Ω)

1 if |Ω| = 2 then
2 OPEN = [];
3 Push P = (Xud

) onto OPEN with f(P ) = 0;
4 else
5 OPEN = ReuseOpen (Ω[: |Ω| − 1], Ω);

6 τΩ = NULL;
7 while OPEN is not empty and (τΩ is NULL or

D[Key(Ω)] > wfmin(OPEN) do
8 FOCAL = {P ∈ OPEN : f(P ) ≤ fmin(OPEN)};
9 P = FOCAL.pop();

10 OPEN.remove(P );
11 n = NextWindowIndex (Ω, P );
12 if ∃j ∈ {n, n+ 1, . . . |Ω|} s.t. Key(Ω[: j]) in D

and D[Key(Ω[: j])] = t(Γ[j]) then continue;
13 for X ′ in SuccessorNodes (P ) do
14 P ′ = Append(P,X ′);
15 t, g(P ′), τ ′ = OptimizeTrajectory (P ′);
16 if t > D[Key(Ω[: n])] then continue ;
17 if X ′ = XΩ[n] then
18 τΩ[:n] = τ ′, D[Key(Ω[: n])] = g(P ′);
19 LTraj(P ′) = τ ′, LTime(P ′) = g(P ′);
20 else
21 LTraj(P ′) = LTraj(P );
22 LTime(P ′) = LTime(P );

23 for j in (n+ 1, n+ 2, . . . , |Ω|) do
24 t← eΩ[j−1]Ω[j](t);
25 if t > D[Key(Ω[: j])]) then break ;

26 if t > D[Key(Ω[: j])]) then continue ;
27 Push P ′ onto OPEN with f(P ′) = t;
28 h(P ′) = f(P ′)− g(P ′);
29 f⃗pr(P

′) = [unv(P ′), g(P ′) + wh(P ′)]T ;

30 return fmin(OPEN), τΩ,D[Key(Ω)];

1) Reusing OPEN Between FMC* Calls: When invoking
FMC* with |Ω| > 2, we set OPEN equal to the OPEN list at
the end of the FMC* search for Ω[: |Ω|−1], with updated f -
values and f⃗pr vectors. For each P ∈ OPEN, before updating
f(P ) and f⃗pr(P ), we execute Lines 11-12 and prune P if
the condition on Line 12 holds. If we did not prune P , we
perform the update f(P ) ← eΩ[−2]Ω[−1](f(P )). We then
update f⃗pr(P ) by executing lines 28-29 with P ′ = P .

V. THEORETICAL ANALYSIS

In this section, we sketch proofs for the bounded-
suboptimality and completeness of FMC*-TSP.

Fig. 2. Computing f(P ′) for P ′ =
(XΩ[1],XA5 ,XA4 ,XΩ[2],XA4 .XA3 ). Paux = (XΩ[2],XA4 ,XA3 ,Q×
R). Regions decomposing Qfree are shown as pink boxes. Trajectory
segment endpoints are shown as yellow diamonds. τ1 is a zero-length
segment between LTraj(P ) and τ2, and τ3 is a zero-length segment
between τ2 and τ4. Concatenating LTraj(P ) with τ1, τ2, and τ3 gives
an obstacle-free trajectory τ ′ with cost g(P ′). τ4 and its extension ignore
obstacles. Extension of τ4 terminates on purple target at time f(P ′).

Theorem 1. For a feasible problem instance, Alg. 1 returns
a solution with cost no more than w times the optimal cost.

Let Γ∗ be a tour whose minimum execution cost is equal
to the optimal cost of a problem instance, t∗f . At any time,
either Γ∗ corresponds to a feasible solution to Problem 1,
meaning LBH lower bounds the execution cost of Γ∗, or
the low-level search found a trajectory for Γ∗, meaning that
LBL lower bounds the execution cost of Γ∗. This means
LB = min(LBH , LBL) ≤ t∗f . By terminating only when the
incumbent satisfies tincf ≤ wLB, we ensure that tincf ≤ wt∗f .

Theorem 2. For an infeasible problem instance, Alg. 1 will
report that the instance is infeasible in finite time.

Finite-time termination follows from the finite number of
tours Problem 1 can generate and the finite number of paths
that Alg. 3 can explore. Since no feasible solution exists, the
incumbent cost tincf remains at its default value ∞, and Alg.
1 must return infeasible on Line 7.

VI. NUMERICAL RESULTS

We ran experiments on an Intel i9-9820X 3.3GHz CPU
with 128 GB RAM. Experiment 1 (Section VI-A) varied
the number of targets and the sum of their time window
lengths, Experiment 2 (Section VI-B) varied the agent’s
speed limit, and Experiment 3 (Section VI-C) varied FMC*-
TSP’s suboptimality factor. All problem instances had 2 time
windows per target. We generated 280 total instances by
extending the instance generation method from [6] to 3D. We
compared FMC*-TSP to a baseline based on related work
[12], [23], [25], which samples trajectories of targets into
points and solves a generalized traveling salesman problem
(GTSP) to find a sequence of points to visit. The baseline
solves its GTSP via the integer program [29] without subtour
elimination constraints. Subtours are only possible if two
samples are identical, which we ensure never occurs. Costs
between sample points are initially an obstacle-unaware
cost, and whenever the GTSP solver generates a sequence
of points, we evaluate the obstacle-aware costs between
consecutive pairs of points in parallel using a variant of IxG*
[8]. We limited each method’s computation time to 60 s.

When we compared with the baseline (Experiments 1 and
2), we set a suboptimality factor w = 1.1 for FMC*-TSP.
The baseline is not bounded-suboptimal for the MT-TSP-O,



Fig. 3. All vertical axes are on a log-scale. (a) Varying the number of targets and sum of time window lengths per target. (b) Varying the agent’s speed
limit. (c) Varying FMC*-TSP’s suboptimality factor.

but it is bounded-suboptimal for the sampled approximation
of the MT-TSP-O that it solves, and we set a suboptimality
factor of 1.1 to make a roughly fair comparison with FMC*-
TSP. The baseline is also not complete, but if it uses more
sample points, it is more likely to find a solution. Therefore,
we initialized the baseline with 5 points per target, and
whenever the baseline failed to find a solution, we added
5 more points per target and tried again.

A. Experiment 1: Varying Sum of Time Window Lengths

We varied the number of targets from 10 to 40 and the
sum of time window lengths per target from 6 s to 54 s.
The results are in Fig. 3 (a). As we saw in [6], there is a
range for the sum of window lengths where the baseline
takes more median computation time than FMC*-TSP to
find a solution, and this range widens as we increase the
number of targets. For these ranges, the baseline needs an
excessive number of sample points to find a feasible solution,
since the fraction of a target’s time windows that is part
of a feasible solution is small. FMC*-TSP’s computation
time increases as we increase the sum of lengths, similar
to previous results on TSP variants with time windows [11],
[30]. Runtime increased in both major components of FMC*-
TSP: the GTSP-TW mixed integer program and the low-
level FMC* search. GTSP-TW runtime increases with time
window length because when we have larger time windows,
it is feasible more often to travel from one target-window to
another, leading to more edges in the target-window graph
and thereby more binary variables in Problem 1. FMC*
computation time increases because FMC*-TSP calls FMC*
more times: a larger number of edges in the target-window
graph causes the GTSP-TW to produce more tours and seek
trajectories for them from FMC*. When we increased the
sum of lengths from 6 to 54, the median ratio of GTSP-
TW time to FMC* time went from 0.076 to 0.19, i.e. while
GTSP-TW time increased, FMC* remained the bottleneck.

In Table I, we show statistics for the percent difference in
cost between FMC*-TSP and the baseline in cases where the
both methods found a solution. Since we set FMC*-TSP’s
suboptimality factor to 1.1, its cost is never more than 10%

TABLE I
COMPARISON OF THE SOLUTION COST tFMC*-TSP FROM FMC*-TSP

AGAINST THE COST tSP FROM THE SAMPLED-POINTS METHOD.

Median Min Max

tFMC*-TSP−tSP
tSP

∗ 100% -0.035% -21% 8.2%

larger than the baseline’s, and at best, its cost is 21% lower.

B. Experiment 2: Varying Agent’s Speed Limit

We varied the agent’s speed limit vmax from 4.0 to 4.5,
fixing the number of targets to 30 and the sum of lengths per
target to 22 s. The results are in Fig. 3 (b). As we increase
vmax, the baseline’s computation time decreases. This is
because if the agent can move faster, the subintervals of
targets’ time windows that are part of a feasible solution grow
larger, and it is more likely that a sample point lies within one
of these subintervals. FMC*-TSP’s median computation time
slightly increases as we increase vmax, due to an increase in
the size of the time window graph, similar to Experiment 1.

C. Experiment 3: Varying Suboptimality Factor

We varied the suboptimality factor of FMC*-TSP from
w = 1.0 to w = 1.1, fixing the number of targets to 20 and
the sum of lengths to 54 s. The results are shown in Fig. 3
(c). As expected, as the allowable suboptimality increases,
FMC*-TSP computes solutions more quickly.

VII. CONCLUSION
In this paper, we developed FMC*-TSP, a complete and

bounded-suboptimal algorithm for the MT-TSP-O in 3D that
leverages graphs of convex sets. We demonstrated a range
of time window lengths for the targets where FMC*-TSP
finds solutions more quickly than a baseline that samples
trajectories of targets into points. A natural extension of this
work would be to incorporate multiple agents.
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