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Abstract— In this paper, we present a novel motion planning
algorithm that inherits the strengths of both optimization
and search-based planners. Optimization-based planners use
the gradient of an objective function to generate a desired
path, whereas search-based planners operate on a graph cap-
turing the salient topology of a robot’s free space. A class
of optimization-based planners leverages prior information,
modeled as a probability distribution of target locations in
an environment, to guide path generation. We embrace one
specific measure, referred to as ergodicity, which encourages
a robot to spend a proportion of its time, weighted by the
distribution, where it is likely to find targets of interest.
Methods that minimize ergodicity were not designed to handle
obstacles in the environment, and augmented approaches that
add “soft” constraints for obstacles to the cost function may
still yield a path that collides with an obstacle. In this work,
we present a hybrid approach that first generates a graph
of the environment’s free space, followed by searching the
graph with ergodicity as a heuristic. Our approach not only
restricts the search to the free space, thereby avoiding obstacles
by design, but also generates trajectories with low ergodicity
values. Extensive testing on 125 test scenarios with varying
degrees of clutter, information distribution, and robot start
locations illustrate the efficacy of our algorithm.

Index Terms—Ergodic search, cluttered environments,
graph-based search, path planning

I. INTRODUCTION

Robotic systems have long been used in place of human
operators for tasks such as data collection or search and
rescue in disaster relief scenarios [1]. These tasks can often
require the system to operate inside of complex environments
such as warehouses or reactors. Naive approaches to perform
a search in such spaces are slow and wasteful for robotic
systems with practical limitations such as battery life [2].
Instead, the system should leverage prior information about
the nature of the mission in order to maximize its effort in
areas deemed the most informative [3] [4].

One such form of search which leverages prior information
about the target locations is ergodic search. In [5], Matthew
and Mezic introduce a metric, referred to as ergodicity,
which quantifies the proportion of time a robot spends in
a region with respect to the underlying information density.
By optimizing the ergodicity measure, a planner can generate
paths which maximize the time spent in regions which are
most likely to contain the desired targets [6] [7] [8].

Although originally designed for obstacle-free environ-
ments, ergodic search can be modified to be leveraged in
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Fig. 1: Map of an indoor environment highlighting two
information-dense locations illustrated as peaks. This work
presents a novel ergodic search algorithm (GESCE) that
generates feasible trajectories that navigate high-clutter en-
vironments while ensuring visitations to information-dense
locations. (a) A 3D view of the building interior, highlighting
the information peaks. (b) A top-down representation of
GESCE-generated trajectory for a vehicle with Dubins car
kinematics.

highly cluttered or complex environments such as interior of
a building. Prior works have demonstrated obstacle avoidance
through use of potential functions or by incurring additional
penalties for traversing within a certain radius of an obstacle
[9] [10]. These methods, however, provide no guarantee
of yielding a feasible trajectory as the cost incurred only
encourages, not enforces, a collision-free path.

In this work, we introduce GESCE, a novel ergodic search
algorithm capable of generating feasible trajectories in the
presence of varying degrees of clutter. In our approach,
we construct a graph over the environment such that all
vertices and edges reside in unoccupied space. We then
conduct a search over this graph utilizing the ergodic met-
ric as a heuristic at each branching step of the search.
We demonstrate that our methodology outperforms current
state-of-the-art trajectory optimization techniques, scoring
an order of magnitude lower in ergodicity values in low-
clutter environments. Furthermore, we emulate high-clutter
environments by leveraging multi-agent path finding (MAPF)
benchmarking maps [11] and show that our algorithm con-
sistently yields feasible trajectories with ergodicity values in
the order of 1073, where other algorithms fail to produce
any feasible trajectory at all.

The remainder of the paper is structured as follows:
Section II provides a brief literature review on how obsta-
cles are handled in prior works. Section III constructs the
necessary background of ergodic coverage and outlines the
vehicle dynamics for our simulations. Section IV dissects
the components of our approach, and Section V showcases
a comparison of results between our algorithm with prior
works. Section VI concludes the paper.
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II. LITERATURE REVIEW

Traditional methods for ergodic search use gradient-based
optimization to generate a set of controls that minimize the
ergodicity of the corresponding path. In order to handle
obstacles in the environment, these prior works either include
obstacles as constraints in their optimization formulation
or discard trajectories that intersect with obstacles mid-
optimization. One of the earliest works that deals with
obstacles in the context of ergodic search is [10], where
the authors utilize potential field-based obstacle avoidance
techniques. They create repulsive fields around an idealized
circular obstacle to guide trajectories around it, achieving
high ergodic coverage without collisions. However, this
method relies on modeling obstacles as circles, making it
challenging to represent complex geometries such as the
internal architecture of a building.

In [9], the authors introduce additional costs for obstacle
intersections during the optimization and formulate their
problem as a stochastic trajectory optimization. They sample
the control space to generate initial trajectories and penalize
those which intersect obstacles to refine the search. While
this work has the prospect of handling cluttered environments
such as the interior of a building, it struggles to overcome
situations where all sampled trajectories within the computa-
tion horizon may intersect with the obstacles, such as a tight
corridor.

An alternative effort for achieving obstacle avoidance in
ergodic search which favors hard constraints instead of soft
constraints is presented in [12]. The authors propose the
use of control barrier functions (CBFs) generated around
obstacles to serve as additional constraints for trajectory
optimization. The functions are weighted by a term which
controls the proximity a robot is allowed to traverse near an
obstacle. Since the barrier functions serve as constraints for
the optimizer, they ensure the feasibility of the solution in
simple environments. However, the use of CBFs makes the
algorithm prone to failure in narrow corridors and difficult
to escape local minima.

In this work, we begin by constructing a graph that
represents the accessible free space for the robot. Subse-
quently, we execute a search algorithm on this graph aimed
at producing a path that minimizes its ergodicity value. By
virtue of the graph being on unobstructed areas, the resultant
trajectories are inherently obstacle-free. Further, any local
minima introduced by the environment is naturally handled
as the search expands from the start location to scan the
entire graph.

III. BACKGROUND

In this section, we provide a background of the ergodic
metric and the formulation of vehicle dynamics used in our
simulations.

A. Ergodic Metric

In our work, we utilize the formulation of ergodicity
detailed in [9]. Here, the authors present that the time-average
characteristics of a robot’s path, denoted by ~ : (0,¢] — X,

evaluate the proportion of time spent at a specific point €
X, where X C R< represents a domain of dimensionality d.
The time-average attributes of a trajectory at a point & are
defined as follows:

t
I(x) = ;/ o(x —~(1))dr
0
where J is the Dirac delta function.
Let () be the given probability distribution function de-
fined over the domain. The ergodicity of a robot’s trajectory
with respect to £(x) is given by

®(t) = Z)‘k T (t) — &l
k=0

where the coefficient A\, defined as A\, = m, assigns
greater importance to lower frequency components with s =
441 The Fourier coefficients of the distributions I'(x) and

&(x) are denoted as T'y(t) and & respectively.

Li(t) = (T, fu) = %/0 fe(y(7))dr
§e = (& fo) = /Xf(x)fk(x)dx

_ 1 m kim .. . .
where fi(z) = 5-[[;Z, cos (L—xl) are the Fourier basis
functions, Ay is a normalizing factor, m € Z is the number
of basis functions, and (-, -) is the inner product with respect
to the Lebesgue measure.

B. Car Kinematics

In this work, we consider our robot to have the kinematics
of a Dubins car. The Dubins car model is a simplified
representation of a wheeled robot’s motion. The robot’s
configuration is given by its position (x, y) and heading angle
(6). Its motion can be defined by specifying the sequence
and parameters of elementary movements (straight lines and
circular arcs). The robot’s dynamics can thus be written as:

£ =wvcosf, y=wvsinb, 0 =uw

where v is velocity, and w is turning rate. Dubins car model
uses a constant value for v and controls the vehicle with
Wmin < w < Wmax -

IV. GESCE: GRAPH-BASED ERGODIC SEARCH IN
CLUTTERED ENVIRONMENTS

In this section, we present our proposed solution for
generating an ergodic trajectory given an obstacle map of
the environment and the target probability distribution. Our
solution’s methodology features three distinct components:
(1) Graph generation, (2) Ergodic search over the graph, and
(3) Trajectory generation given the graph search’s output, as
outlined in Algorithm 1. A detailed discussion about each
component is covered in its respective subsection.
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Fig. 2: Pictorial representation of different steps in GESCE
from Algorithm 1. (a) Firstly, the free space is sampled
uniformly to generate nodes (shown in red). (b) Next, a node
sequence is obtained from an ergodic metric-based graph
search that results in the path with the lowest ergodicity
value. (c) Lastly, this node sequence is used to generate a
kinematically feasible trajectory. The green X is the robot’s
starting location.

Algorithm 1 GESCE algorithm

1: Input:Information and obstacle map, robot start location

2: Output: A kinematcally feasible ergodic path

3: Generate a random geometric graph G in the free space
of the environment

4: Search over the graph using the ergodic metric as the
heuristic using Algorithm 2

5: Post-process to generate a path which respects the robot-
dynamics using Algorithm 3

A. Graph generation

This work uses a discrete approximation of the underlying
space in the style of probabilistic road maps (PRMs) in order
identify object-free paths. First, consider a Eucledean space,
&, describing the position of a robotic system. The first step
in our algorithm is to partition the space into two subsets,
E_obs and &_free, representing the obstacles and the free
space respectively. We approximately represent the Euclidean
space with a random geometric graph (RGG) populated with
N samples from £_freenE. Connectivity of the RGG is of
the r-disc type, where r is a user-specified hyperparameter.
Any given two vertices are connected with an edge if they are
visible in the presence of obstacles and the distance between
them is less than r.

The result from this process is a low-resolution graph rep-
resentative of the environment, in which neither the vertices
nor any point along an edge intersects with an obstacle. Thus,
a search conducted on this graph, where the robot is able to
move along the edges, guarantees an obstacle-free path for
the robot without any other constraints based on clutter.

B. Graph-Based Ergodic Search

The next step is to leverage the generated graph to compute
a path that minimizes the ergodicity (®), also referred to
as the ergodic path P(v), to every reachable node in the
graph from the source node s. To this end, Algorithm 2
begins with the immediate neighbors of the source node s
(Lines 3 — 5) and expands outward. The algorithm iterates
through the neighbors of every subsequent node and uses the

Algorithm 2 Graph-based Ergodic Search

: Input: Graph G(V, E), source node s, information map
Output: An ergodic path P(v) from s to all nodes
Initialize path to every node P(v) < {s} Vv eV
Initialize a priority queue @ using ®(P(v)) as keys
Add s to Q
while @ is not empty do
Pop the node u from @
for each neighbor u’ of u do
Generate a path A(u’) by adding u’ to P(u)
if ®(A(u’)) < ®(P(u’)) then
Pu') = Au)
Add v’ to Q
13: end if
14: end for
15: end while

R AN A R

— — =
N e

ergodicity of the path from the source node as a heuristic to
determine an ergodic path from the source node to a given
node (Lines 6 — 15).

It is worth noting that picking a path that passes through
a high information region is naturally achieved by using
ergodicity as a heuristic for graph search, as shown in Fig.
2(b). Consequently, the algorithm not only generates a path
that minimizes ergodicity from a given start location but also
generates the most ergodic path between the source node and
every other reachable location in the environment. We refer
to this as the point to point ergodic path and present details
on the performance of our approach and comparisons with
prior work in Section V-D.

In our search algorithm, we intentionally refrain from
maintaining a closed list of expanded nodes, a feature com-
monly employed in Dijkstra-style graph searches. Absence
of a closed list allows the search to visit each node multiple
times thus enabling further exploration of the map. This
deliberate omission is attributed to the nature of the ergodic
metric, which is a highly non-convex function. As a result,
the metric does not serve as an admissible or consistent
heuristic. Consequently, global optimality of the results ob-
tained from our search cannot be guaranteed.

Our graph search sequentially traverses nodes with the
lowest ergodicity values. Through this process, it explores
nodes while preserving their visitation order, thereby gen-
erating ergodic paths to each node. Upon completion of
the search, the absence of nodes in the open list signifies
that further visitation from any node would increase the
ergodicity of the visited node.

An important distinction between our framework and
previous approaches lies in the absence of predetermined
path length constraints. While prior works such as [9][12]
yield the generation of a fixed length path, our approach
grants the solver autonomy in determining trajectory length
based on the ergodicity value.

C. Trajectory Generation

In order to bridge the gap between the graph-based ergodic
search and feasible trajectories for the robot, we employ a
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dedicated trajectory generator module. This module accepts
the path generated by the graph search and converts it to
a sequence of kinodynamically feasible trajectories while
checking for collisions with obstacles.

The trajectory generator module (Algorithm 3) iterates
through the nodes in the increasing order of their ergodicities
to compute a feasible ergodic trajectory (Lines 3 — 4). To
this end, the nodes in the ergodic path P(v) obtained from
Algorithm 2 are used to determine the Dubins trajectory
(Lines 6 — 7). As long as these trajectories do not intersect
with any obstacles, they are appended to each other to obtain
an ergodic trajectory from the source node to the node under
consideration (Lines 8 — 14). If there are any intersections,
the node under consideration is discarded, and the algorithm
switches to the node with the next lowest ergodicity value
until all nodes are explored (Lines 8 — 10).

Algorithm 3 Trajectory Generation Algorithm

1: Input: An ergodic path P(v) from s to all nodes, robot’s
kinodynamic (Dubins car) constraints, obstacle map
: Output: Kinodynamically feasible ergodic trajectory T
: Create a new list V' with nodes ordered by increasing
ergodicity ®(P(v))
: for node v’ € V' do
Initialize an empty trajectory T

4
5
6: for each node pair (v;_,,v}) in the path P(v’) do
7
8
9

W

i—17 74
Compute Dubins trajectory D from v}_, to v

if D intersects with obstacles then
: Reset the trajectory 7
10: Break

11: else

12: Append D to T

13: end if

14: end for

15: if 7 is not empty then

16: return Ergodic trajectory T
17: end if

18: end for

19: return ‘No feasible trajectory exists’

V. RESULTS

In this section, we begin by defining and quantifying
the notion of clutter. Subsequently, we present the results
of our approach compared to existing methods within the
field, particularly focusing on low-clutter regions. Lastly, we
illustrate our results on benchmark Multi-Agent Pathfinding
(MAPF) maps that represent high-clutter environments.

A. Quantifying Clutter in Environments

Given our method is proposed as an ergodic search on
cluttered environments, it is important to establish a metric
that can quantify “clutter”. While many alternatives to de-
scribing clutter exist, we present a metric that captures the
distance of the farthest visible points from all the discretized
locations in the environment. Specifically, we formulate our
metric by uniformly discretizing a unit side-length map into

= Salman et. al
— Ayvali et. al
— Lerch et.al
= Ours

(a) (b)

Fig. 3: Comparison of ergodic trajectories generated using
GESCE (our approach) with prior works. (a) Information
map featuring an arbitrarily generated information distribu-
tion with two circular obstacles in white. (b) Information map
with a uniform distribution and higher clutter. All trajectories
assume single integrator dynamics for the robots.

100*100 points and then casting diametric lines centered at
every point to calculate the furthest distance to an obstacle.
We then average the maximum distance of each point and
take its inverse to quantify an environment’s clutter.

In this metric, a low value indicates low clutter, while a
high value indicates a high amount of clutter. Therefore, by
our metric, an unbounded obstacle-free map has a clutter
value of 0, while a fully occupied map will have a clutter
value of co. A highly cluttered environment now signifies
that the robot’s motion is highly restricted, indicating com-
plex obstacle geometries. Table II illustrates the values of
our proposed metric on the maps we use from prior works
as well as those from the MAPF benchmark dataset [11].

B. GESCE performance on low-clutter maps (< 3.0)

In our study, we compare our results against [9] [10] [12]
using two distinct maps. The first map, shown in Fig. 3 (a),
is a map very similar to the one used in [9]. It contains two
isolated obstacles with three information peaks distributed
throughout. The second map, shown in Fig. 3 (b), is a map
very similar to the ones on which [12] [10] have presented
their results. It exhibits a uniform distribution with multiple
obstacles. It should be noted that both maps have a low
clutter value (< 3.0), which is indicative of large amounts
of free space in the environment.

For our simulations, we construct the graph with N =
5000 sampled points and a connection radius r as 0.05,
normalized such that the map sides are of unit length. The
metrics we use to compare the results are the ergodicity
values and success rate. The success rate signifies the per-
centage of runs a feasible output trajectory is obtained for
each algorithm. As illustrated in Table I, we outperform [10]
[9] significantly on the first map (Fig. 3 (a)), achieving an
ergodicity value that is lower by a factor of 10. Compared to
[12], we have a more moderate performance improvement,
achieving an ergodicity value that is 33% lower. In order
to demonstrate the repeatability of our results, the ergodicity
values in Table I are an average of 5 trials with varying robot
starting locations.

With an increase in the clutter from 1.72 to 2.49 for the
second map (Fig. 3 (b)), our algorithm outperforms all of

7614

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 11,2025 at 20:12:44 UTC from IEEE Xplore. Restrictions apply.



Map 1 Fig. 3 (a)
(Single Integrator dynamics)

(Single Integrator dynamics)

Map 2 Fig. 3 (b) Map 2 (Not shown)

(Dubins Car dynamics)

Ergodicity (x10~2) | Success Rate || Ergodicity (x10~2) | Success Rate || Ergodicity (x10~2) | Success Rate
Salman et. al [10] 19.86 80% 14.55 100% N/A N/A
Ayvali et. al [9] 19.41 80% 8.27 80% 7.2 20%
Lerch et. al [12] 1.828 100% 2.786 100 % N/A 0%
GESCE 1.258 100 % 0.29 100% 0.32 100%

TABLE I: Comparison of ergodicity values from our work (using GESCE) against [10][9][12]

Obstacle Map Clutter
Unbounded Map with No obstacles 0

Bounded Map with No obstacles 1.46
Mapl Fig. 3 (a) 1.72
Map?2 Fig. 3 (b) 2.49
Maze-32-32-4 Fig. 4 (f) 6.04
Maze128-128-10 Fig. 4 (g) 6.42
Boston_0-256 Fig. 4 (h) 10.79
Berlin_1.256 Fig. 4 (i) 11.40
Paris_1_256 Fig. 4 (j) 14.07

TABLE II: Measure of clutter on maps used in Section V

the prior works by an order of magnitude with a 100%
success rate. The results shown in Fig. 3 (b) deal with
single integrator dynamics for the vehicles. An additional
experiment with Dubins car dynamics is documented in
the last two columns of Table I, where Algorithm 3 now
employs Dubins car constraints to compute the ergodic
trajectory. While our method achieves a 100% success rate
with an ergodicity of 0.32 x 102, prior works either fail to
generate feasible trajectories or provide output trajectories
with high ergodicity values.

C. Results against high-clutter MAPF benchmark maps

1 peak (a) 2 peaks (b) 2 peaks (c)

[l |=I-]

i
=it

(g) Maze-128-128-10  (h) Boston_0_256

3 peaks (d)

Uniform distribution (e)

(j) Paris_1_256

() Maze-32-32-4 (i) Berlin_1_256

Fig. 4: (a-e) Display the generated information maps used
for testing. (f-j) Present the obstacle maps selected from the
MAPF benchmarking set [11], which were used to generate
the results shown in Table III

Ergodicity (x10~7)
Information Map (Fig. 4)

Obstacle Map

(a) (b) (© [ @ | (e)

Maze-32-32-4 7.71 | 16.09 | 6.07 | 544 | 3.01
Mazel28-128-10 | 047 | 4.48 3.18 | 494 | 245
Boston_0_256 0.64 890 | 505 | 6.80 | 4.55
Berlin_1_256 1.05 8.67 2.19 | 2.24 | 3.05
Paris_1_256 0.76 | 9.98 357 | 5.15 | 4.96

TABLE III: Averaged results from 5 runs.

We present the outcomes of our simulation on maps Maze-
32-32-4, Maze-128-128-10, Boston_0_256, Berlin_1_256 and

Destination

Start location

Fig. 5: Output of GESCE when used for point to point travel
while conducting ergodic search

Paris_1.256, taken from the MAPF benchmarking dataset
[11]. These maps have been selected for their high clutter
value (> 6), signifying the robot’s movement is constrained
at many locations within the environment. For each obstacle
map, we examine five distinct information peaks: one central
information peak, two diagonally positioned equivalent in-
formation peaks, two peaks with differing strengths, 3 peaks
presented in a triangular pattern, and a uniform distribution.
All information peaks and obstacle maps are illustrated in
Fig. 4.

We conducted tests on the five aforementioned obstacle
maps and information maps, performing five simulations
for each scenario with randomly chosen starting locations.
The results from these 125 scenarios are then averaged,
with the corresponding values depicted in table III. Re-
sulting trajectories for five representative tests are shown
in Fig. 6, and results for all 125 runs can be found on
GESCE Results (https://bshirose.github.io/projects/GESCE/).
As evidenced in Fig. 6, the agent allocates its time in
regions proportionally to the region’s information density.
Furthermore, it naturally avoids obstacles and effectively
navigates mazes to reach peaks of information.

D. Point to point

In [9], the authors introduce a way to compute an ergodic
trajectory given a start and end location. It is worth noting
that GESCE’s approach not only retains this feature but
also extends it to highly cluttered environments. We show
GESCE’s output when used for point to point traversal in
Fig. 5, which demonstrates our algorithm’s ability to navigate
from the robot’s starting location, denoted by a green X,
to a specified destination, denoted by a blue circle, while
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Fig. 6: Results of GESCE on MAPF benchmarking maps taken from [11]. Green X represents the robot’s start location.

spending a significant proportion of time in the information
dense region centered in the map.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a novel graph-based
approach to perform ergodic search in cluttered environ-
ments. We have demonstrated that by searching a graph
which represents free space in the environment, we can
ensure the generation of collision-free trajectories with low
ergodicity values. Our method outperforms the current state-
of-the-art trajectory optimization techniques in low-clutter
environments and yields feasible ergodic trajectories in high-
clutter environments where previous methods fail. While
our approach encodes the free space into the graph, the
deployment on the robots relies heavily on the conversion
of ergodic paths to kinodynamically feasible trajectories via
Algorithm 3. Future work in this context could focus on
developing generic local planners that include ergodicity in
the trajectory generation modules. Furthermore, given our
algorithm is tailored to act as an ergodic trajectory generator
for complex environments, it fulfills the role of a founda-
tional low-level ergodic trajectory generator for extension to
multi-agent systems[13] [14].
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