
Hierarchical Planning for Long-Horizon
Multi-Agent Collective Construction

Shambhavi Singh1, Zejian Huang1, Akshaya Kesarimangalam Srinivasan1,
Geordan Gutow1, Bhaskar Vundurthy1, and Howie Choset1

Abstract— We develop a planner that directs robots to
construct a 3D target structure composed of blocks. The robots
themselves are cubes of the same size as the blocks, and
they may place, carry, or remove one block at a time. When
moving, robots are also allowed to climb or descend a block.
A construction plan may thus build a staircase-like scaffolding
of blocks to reach other blocks at higher levels. The order of
block placement is important; for example, a block that sits
atop other blocks must be placed after the blocks below it,
and a block that needs scaffolding cannot be placed until after
the scaffolding is. Prior works focus on end-to-end approaches
that simultaneously plan for block placement order and inter-
robot collisions. Larger structures are either intractable or
yield high-cost solutions. A prior approach mitigates this by
decomposing the structure into smaller components that can
be planned for independently, but the computational challenge
remains. We present a hierarchical approach that first 1)
uses A* to determine a sequence of block placements and
removals while ignoring inter-robot collision, then 2) identifies
ordering constraints between block placement and removal
actions, and finally (3) computes collision-free paths for multiple
robots to perform said actions. Compared to an optimization
approach that minimizes the number of timesteps to complete
the structure, we observe a 100x reduction in computation time
for comparable solutions.

I. INTRODUCTION

We envision a future where robots will assemble large
structures in remote locations on Earth or even in space.
This will likely require coordinating large numbers of robots.
A challenge in such construction planning is that robot
actions alter the world. When the structure changes, the
actions available to the robots do too. Robots must therefore
plan far in advance to adapt to the evolving structure, and
avoid conflicts and deadlocks. To get started in studying
problems with this feature, this work, along with others
[1]–[5], considers a simplified problem referred to as the
Multi-Agent Collective Construction (MACC) problem. In
the MACC problem, cubic robots coordinate in a 3D grid
world to assemble a structure made of cubic blocks (Fig. 1).
Blocks and robots are the same size and occupy one cubic
location in the grid. Robots can modify the environment by
block pick-up or place actions. Because robots can climb
or descend at most one block height at a time, they may
construct temporary staircase-like scaffolding using extra
blocks to make higher altitudes reachable (Fig. 2). The
problem is inspired by the TERMES project [1], and initial
solutions were developed in [2]–[4].

This work was supported by the AFRL and the AFOSR
1Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213

Fig. 1. An example structure for the multi-agent construction problem

A major challenge in the MACC problem is that the length
of the action sequence to build a structure increases quickly
as the structure gets bigger. For example, a two-block tower
requires placing the two tower blocks as well as placing
and removing one scaffolding block (4 pick-up/place actions
total), while a tower of height three needs three scaffolding
blocks (9 pick-up/place actions), and a tower of height 4
needs 16 pick-up/place actions.

As a result, MACC planning involves long time horizons.
Long-horizon problems are particularly difficult as the num-
ber of valid sequences of actions usually grows exponentially
with the planning horizon. Breaking planning into easier sub-
problems has been shown to mitigate the computational costs
of long horizon planning in other problem domains. One
method is to plan for multiple smaller short-horizon tasks that
can be solved quickly [5]–[10]. Alternatively, hierarchical
approaches like [11]–[13] plan with abstract actions for
which the horizon is shorter, then refine the solutions to
include collision avoidance and other constraints.

We propose a hierarchical approach to the MACC prob-
lem, using pick-up and place actions as the abstract actions.
Our approach (Fig. 3) finds solutions for structures that were
too large for a prior optimal algorithm [4] yet maintains com-
parable solution quality on structures that [4] could solve.
We formalize the MACC problem in section III. In section
IV we find a single-agent plan of abstracted actions, where
each action corresponds to a non-unique set of primitive
action sequences that place or remove a specific block. We
identify sets of abstract actions for parallel execution of this
single-agent abstract plan in section V. For each set, we
then present a guarantee that a multi-agent primitive action
path exists. The multi-agent primitive path planning is solved
using conflict-based search [14] in section VI. Finally in
section VII we compare the performance of our hierarchical
approach with four existing approaches [2]–[5].

II. RELATED WORKS

A. Hierarchical Planning

Hierarchical planning approaches leverage domain knowl-
edge to identify abstract tasks that combine multiple prim-

(a) (b) (c) (d) (e) (f) (f)

Fig. 2. (a-c) A robot (Purple) moves to an access location, (d) places a block (Orange), (e) moves back to the next action’s access location, (f) picks
up a different block (Orange) and (g) returns while carrying the block. The primitive actions in this sequence are: Move → Move → Move → Place →
Move → Pick-up → Move.

itive actions. They generate a plan composed of such tasks
and then refine it to generate the primitive action plan. For
multi-arm assembly, [11] generates a roadmap for each robot,
solves a relaxed problem on the roadmap using Mixed Integer
Linear Programming, and then finds collision-free motion
plans for each robot. The relaxed abstract plans usually
require fewer timesteps than the primitive plans, which keeps
the initial search tractable. The procedure for self-assembling
a structure in [15] first computes a partial order plan that
is enforced via run-time constraints. Primitive plans are
obtained via local controllers. The method successfully plans
for some large problem instances. A deep reinforcement
learning method in [16] solves a multi-agent warehouse
automation problem using a two-level hierarchy of a single-
agent Markov Decision Process on the upper level and a
multi-agent Markov game on the lower level.

Refining the abstract plan to a primitive plan can itself
be computationally expensive. [17] introduces a heuristic
approach to estimate the number of modifications required
in the abstract plan before generating a primitive plan. These
estimates are based on task decomposition graphs containing
all the abstract tasks’ decomposition in the planning domain.

B. Multi-Agent Collective Construction (MACC)

The TERMES [1] project developed small robots to co-
operatively build a structure composed of blocks similar to
the robots in size. The structures were much larger than the
robots, requiring them to construct traversable paths on the
structure. Inspired by the TERMES project, [2] formulated
the blockworld construction task considered in this work and
found that state-of-the-art domain-independent planners (as
of 2014) could not solve even small instances. Therefore,
they presented a heuristic single agent planner. A follow-
on work [18] modified the heuristic planner for multiple
agents. Both techniques plan extremely fast but require
numerous primitive actions to construct the structure. The
optimization-based approach in [4] improved on solution
quality by formulating a sequence of Mixed Integer Linear
Programs (MILPs). This minimizes the number of time steps
to build the structure (the makespan), and for fixed makespan,
minimizes the number of primitive actions used. While
optimal, this approach is intractable for larger structures.

To improve on computation time, [5] suggests decom-
posing the desired structure into substructures, planning
independently using the MILP approach of [4], then ag-
gregating the solutions. For sparse and scattered structures,
decomposition achieves better solution quality than earlier
suboptimal approaches [2], [3] and smaller computation
time than the optimal MILP approach [4]. The reliance on

structural composition is however less effective for taller or
densely built structures. The current work thus fits into a gap
in the literature, providing high-quality construction plans
for multiple agents on structures otherwise accessible only
to heuristic approaches like [2].

III. PROBLEM FORMULATION

The MACC problem tasks a team of agents to construct a
given 3D structure in a gravity-constrained world. The agents
are mobile robots that can pick-up/place blocks, and carry
blocks on top as they move. We represent the workspace as
a 3D grid world, where each cubic cell of the workspace is a
triplet (x,y,z), entries ranging from 1 to M. The agents and
blocks both occupy one cell each. An agent may execute any
of the following primitive actions (Fig. 2):
• Move: Move one step to an adjacent cell in 4 cardinal

directions, climbing or descending at most one block.
• Pick-up/Place: Pick up or place a block at a neighbor-

ing location as long as the agent and the neighboring
location are at the same height.

• Enter/Exit: Enter the workspace to a boundary location
(may choose to be carrying a block or not), or exit the
workspace from a boundary location.

Agents can place blocks on the ground (height 0) or atop
another block in the workspace. Additionally, agents cannot
place blocks at boundary locations, and all boundary loca-
tions remain at height 0. We assume a large depot of blocks
outside of the workspace is accessible to agents through any
boundary location. Since agents can climb/descend at most
one block, they may place extra scaffolding blocks to access
higher levels of the workspace, and remove scaffolding later.

Definition 1. We define a block that is a part of the goal
structure as a target block and a temporarily placed block
that is not part of the goal structure as a scaffolding block.

A problem instance is completed when all target blocks
have been placed, all scaffolding blocks removed, and all
agents have exited the workspace. We now define our metrics
for evaluation:

1. Makespan: The total number of timesteps required to
complete the problem instance,

2. Sum of costs: Total number of actions taken by agents,
3. Computation Time: The time it takes to find a solution

for completing a structure.

IV. ABSTRACT-LEVEL PLANNING

An abstract action adds or removes a block from the world.
This corresponds to the set of sequences of primitive actions

Fig. 3. For a goal structure, a single-agent sequence of block placement
and removal actions is found using A* (A). This abstract action sequence
is converted into a dependency graph, where directed edges indicate one
action must precede another (B). Finally, conflict-based search is used to
plan paths for multiple robots to build the structure (C).

such that an agent places or picks up the block and returns to
a depot location. The abstract planning problem is formulated
as a graph search, where a node represents a state of the
world , and an edge represents an abstract action. We use A*
search to find the shortest path from the empty world to the
goal structure with a uniform edge cost, thereby minimizing
the total abstract actions.

Definition 2. For a block location (xb,yb,zb), all cardinally
adjacent block locations (xa,ya,za) at the same height are
called access locations (In Fig.2(d) robot places a block
standing on an access location).

|xa− xb|+ |ya− yb|= 1, za = zb

Definition 3. A pick-up or place action is executable if
a path exists for an agent to traverse from outside the
workspace to an access location, execute the action, and
return to outside the workspace.

At each search node, the available edges correspond to
the executable (Definition 3) abstract actions at that state.
The A* search is accelerated by the use of an informative
cost-to-go heuristic and two node-ordering heuristics.

Remark 1. The abstract action corresponding to a node n
is executable in the state produced by executing the actions
of each node along a path from the empty world to n.

The cost-to-go heuristic estimates the amount of scaffold-
ing needed to build the structure using Algorithm 1. For
some node, let T ′ be the set of unplaced target blocks, P
be the set of placed scaffold blocks, and P′ be the set of
scaffold blocks yet to be placed. A good estimate of the
cost-to-go is h = |T ′|+ |P|+ 2 · |P′|; one for each unplaced
structure block, one for each temporary scaffold yet to be
removed, and two for each necessary scaffold yet to be
placed and removed. This underestimates the number of
high-level actions needed to finish the structure. However,
computing |P′| is challenging. Instead, we use Algorithm 1
to find an accurate under-estimate of |P′| at each search node.

Algorithm 1 Scaffold Estimation
Input: A state of a search node
Output: Estimation of scaffolds required c

1: c ← 0, u(x′,y′,z′)← 0,∀(x′,y′,z′) ∈ [1...M]3

2: for unplaced target block group gz at height z > 1 do
3: for i = 1,2, ...,z do
4: S(gz, i) ← Set of scaffolds (Definition 5)
5: if no target block or placed scaffold in S(gz, i) then
6: u(x′,y′,z′)← u(x′,y′,z′)+1,∀(x′,y′,z′) ∈ S(gz, i)
7: I(gz, i)← 1
8: for unplaced target block group gz at height z > 1 do
9: c← c+∑

z−1
i=1 I(gz, i) ·min(x′,y′,z′)∈S(gz,i)

1
u(x′,y′,z′)

Definition 4. The set of blocks present at any (x,y) grid
location is collectively referred to as a tower. The height of
the tower is the number of blocks present at that location.

To construct a target tower of height z, blocks within the
tower need to be placed in increasing order of height. To
place the target block at height z > 1 when the target block
at height z− 1 is placed, we require all scaffolds needed
to place the block at z− 1, as well as 1 extra scaffold at
height z−1 1 Manhattan distance away, 1 extra scaffold at
height z−2 2 Manhattan distance away, etc., until reaching
the ground. Further, if we connect adjacent target blocks of
the same height into a group, the same observation holds:
the whole group requires 1 extra scaffold at height z−1 of 1
Manhattan distance away from the group, 1 extra scaffold at
height z−2 of 2 Manhattan distance away, etc. Let gz denote
a group of adjacent, unplaced target blocks at height z, and
gxy be the set of xy locations.

Definition 5. For each i ∈ [1,z−1], define the scaffold set
of S(gz, i) as the set of possible scaffolds at height z− i of i
Manhattan away from the group:

S(gz, i) = {(x′,y′,z′) :(x′,y′) /∈ gxy & z− z′ = i &
∃(x,y) ∈ gxy |x− x′|+ |y− y′|= i.}

Algorithm 1 provides an underestimate of the scaffolding
blocks required, at any given state of an A* search node. In
Lines 2-4, for each unplaced target block group gz, we first
compute S(gz, i). Next, in Line 5, we check if gz contains
neither target blocks, nor already placed scaffolding, and if
True, in Lines 6-7, we thus increment a usefulness counter
u(x′,y′,z′) for all scaffolds within S(gz, i) and set a binary
indicator I(gz, i) to 1 to indicate a scaffold is required among
them. The usefulness counter of a scaffold overestimates the
number of unplaced target block groups that require it. The
inverse of a usefulness counter is thus an underestimate of
the fraction of this scaffold required by each target group.
In Lines 8-9, we compute c as the sum of the minimum of
the inverse of all usefulness counters of blocks in S(gz, i) for
every gz,i whose indicator is 1.

The underlying symmetry of the structures causes many
nodes to have the same estimated total cost to reach the goal.
Two node-ordering heuristics are used to break ties. First,

Algorithm 2 Building an Action Dependency Graph
Input: Action Sequence A, Set of all scaffolding graphs
Output:Action Dependency Graph

1: ADG ← [empty graph]
2: for action ai in A do
3: Locai ← 3D location of action ai
4: Sai ← scaffolding set for Locai

5: for a j in {a0→ a1→ ...ai−1} do
6: Loca j ← 3D location of action a j
7: Sa j ← scaffolding set for Loca j

8: if Locai is a descendent of Loca j in Sai then
9: ADG ← ADG with edge from a j to ai

10: else if xy(Locai) = xy(Loca j) then
11: ADG ← ADG with edge from a j to ai
12: else if ai removes block in Sa j or ai places block

on block in Sa j then
13: ADG ← ADG with edge from a j to ai

actions that place a target block are explored before actions
that place or remove scaffolding. Second, we compute for
new scaffolding blocks the number of towers they can
support (whose scaffolding set they fall in) and prioritize
actions that support more towers.

V. ABSTRACT ACTION PARALLELIZATION

A* produces a sequence A = {a0→ a1→ ··· → an−1} of
abstract actions that a single agent can execute. Many actions
in A could be executed simultaneously, but some cannot.
We say that a dependency exists between any such pair of
abstract actions. Let ac ∈ A, ap that precedes ac in A, and as
succeed ac in A. In general, an action ac can both depend
on and be a dependency of multiple actions.

For example, all block placement actions that affect the
same tower must occur in the same order as in the abstract
action sequence. This ensures an action location is available.

Property 1: ac is dependent on ap if both actions occur
at the same x and y coordinates and ap precedes ac in A.

Similarly, if ap places a scaffolding block for another
action ac on a tower, ap must occur before ac to ensure
the availability of an access location and scaffolding for ac.

Property 2: ac is dependent on ap, if the block manipu-
lated by ap falls within the scaffolding set (Definition 5) of
the tower for ac, Sc =∪z−1

i=1 S({(xc,yc,zc)}, i) where (xc,yc,zc)
is the block location of ac.

Suppose an action’s sole access location is atop a scaf-
folding block. The pick-up of that scaffolding block must
occur after the access location is no longer required.

Property 3: ac is dependent on ap if ac either removes
a block in the scaffolding set Sp = ∪

lzp−1
i=1 S({(xp,yp,zp)}, i)

for ap or places a block atop a block in Sp.
It is worth noting that we add the dependencies of Property

2 and Property 3 conservatively to avoid finding the exact
scaffolding block being used. If two access locations exist
for an abstract action, the two previous actions on both
access locations satisfy Property 2, but only one is needed.

Similarly, if two subsequent actions make those access
locations unavailable, both satisfy Property 3 for that action.

Algorithm 2 takes A as input and generates an Action
Dependency Graph (ADG). Each node in the ADG represents
an abstract action from A, and the directed edges between
the nodes represent dependencies between their respective
actions. Since all dependencies are only added to past
actions, the ADG is a directed acyclic graph.

Definition 6. Set of abstract actions that are not dependent
on each other can be grouped into a round. Agents can be
tasked to execute all abstract actions in a round parallely.

The goal of Algorithm 3 is to produce a sequence of
rounds containing all actions in A, such that each round
is feasible for multi-agent pathfinding provided all actions
in preceding rounds have occurred. The candidate is a
topological sort [19] of the ADG identical to that proposed
in [20]. The first round contains the ADG nodes with no
parents. Subsequent rounds are produced by removing the
nodes in the previous round and selecting the nodes that no
longer have parents. These rounds form the first candidate
allocation P (Lines 5−11), where P[i] represents the actions
in round i. For each round P[i] we check if each action
ac ∈ P[i] is executable in the Statec produced by actions
in preceding rounds and actions in P[i] that precede ac
in A (Lines 12− 16). If not, we find an action a j that
succeeds/precedes ac in A but preceded/succeeded it in P.
Add a dependency to force ac and a j to occur in the
order they appeared in A (Lines 17−25), recompute P, and
test again. This procedure eventually adds to each action a
dependency on every action that precedes it in A, which will
produce a candidate allocation identical to A. In practice,
Lines 17−25 either never get called or quickly converge to
a set of feasible rounds due to the conservative nature of the
dependencies that already exist between actions.

Theorem 1. A single agent path exists for each action in
round q given that (1) all actions in all past rounds have
been executed, (2) all preceding actions in A in round q have
been executed, and (3) no other actions have been executed.

Proof. Correctness: Algorithm 3 returns a set of rounds only
if it identifies (in Line 15) a single agent path for each action
in the world specified by assumptions (1), (2), and (3).

Completeness: The single-agent action sequence is single-
agent executable. Thus, placing a1 in round 1, a2 in round
2, etc., is satisfactory. Algorithm 3 eventually produces pre-
cisely these rounds, and thus always returns a solution.

Next, we provide a sufficient condition for a set of abstract
actions (i.e. a round) to be solvable by a Multi-Agent Path-
Finding (MAPF) [21]–[24] algorithm. Let parking locations
be locations in the workspace where no blocks can be
placed. We overload the term well-formed condition [23] and
formally define it below, then prove this condition ensures
solvability.

Definition 7. A round is well-formed if there exists a single-
agent path to execute round’s actions and a cycle of parking

Algorithm 3 Generate Feasible Rounds of Task Allocation
Input:Action dependency graph ADG, Action Sequence A
Output: Set of feasible rounds P

1: Done← FALSE
2: while NOT Done do
3: ADGworking ← ADG
4: Round index q ← 1
5: while number of nodes in ADGworking > 0 do
6: P[q]← empty sequence
7: Root ← actions that are root nodes in ADGworking
8: for ai in Root do
9: push ai onto P[q]

10: Remove node of ai from ADGworking
11: q ← q+1
12: Current state Statec ← Empty World
13: for round i in {1,2, ...q−1} do
14: for ac in P[i] do
15: if ac is executable in Statec then
16: Statec ← State with ac executed in Statec
17: else
18: for round k in {1,2, ...q−1} do
19: for action a j in P[k] do
20: if k ≤ i and a j succeeds ac in A then
21: ADG ← ADG with edge from a j to ac
22: GOTO line 2
23: if k ≥ i and a j precedes ac in A then
24: ADG ← ADG with edge from ac to a j
25: GOTO line 2
26: Done← TRUE

locations whose length is no less than the number of agents.

Lemma 1. All well-formed rounds are solvable.

Proof. Assume all agents are located in the cycle of parking
locations at the initial timestep. Start with the agent assigned
with the first abstract action in the single-agent path. Since
the single-agent path is valid, there must exist a path for this
agent that begins at boundary locations, finishes the block
action, and returns to the boundary locations. When it needs
to occupy any boundary locations, all other agents can move
along the cycle to avoid collisions since the size of the cycle
is at least as large as the number of agents. We repeat this
process for all actions until completion.

Theorem 2. Every round of abstract actions is solvable.

Proof. By Theorem 1, there exists a single-agent path to
execute all abstract actions within the round. The boundary
locations of the workspace constitute a cycle of parking lo-
cations as long as the workspace is large enough. The round
of abstract actions is well-formed and thus solvable.

VI. MULTI-AGENT PATH FINDING

Finding collision-free paths for all agents to execute as-
signed abstract actions is similar to the Multi-Agent Pickup
and Delivery [23] problem, a variation of MAPF. Conflict-
Based Search (CBS) [14], commonly used for solving such

problems, is complete and optimal with respect to makespan
and sum of costs, and works for general graphs. It follows
a bi-level approach where the low-level plans paths for each
agent given constraints specified by the high-level. The high-
level operates on a Conflict Tree (CT), finds conflicts be-
tween individual paths in a search node, and resolves them by
adding two child nodes in CT, each with an extra constraint
for an agent involved in the conflict. In a vertex conflict two
agents occupy the same vertex at the same timestep. In an
edge conflict two agents traverse the same edge at the same
timestep. Two constraints are used to resolve these conflicts.
A vertex constraint (ri,x,y, t) constrains agent ri to occupy
(x,y) at time t. An edge constraint (ri,x,y,x′,y′, t) constrains
agent ri to move along the edge (x,y)→ (x′,y′) at time t.

Block actions can alter the workspace, changing the valid-
ity of movement and block actions. This requires two extra
conflicts and one extra constraint. An agent-block conflict
(ri,r j,x,y, t) happens when agent ri occupies (x,y) at time t,
while agent r j performs a block action to (x,y) at the same
time. A height conflict (ri,r j,x,y,z, t) happens when agent
ri occupies (x,y,z) at t, while z does not match the height
ht(x,y) and agent r j’s block action is located at (x,y). A
block constraint (ri, t) prohibits agent ri from performing
its block action at time t.

At a timestep t in a low-level search, let ht(x,y) denote the
height of the tower at (x,y) at this time. We add all locations
(x,y,ht(x,y)+1) right above each tower to the default set of
vertices for the low-level search. We then add locations that
will be made available by tasked abstract actions as extra
vertices, given a set of abstract actions allowed to be executed
at this timestep. For instance, if location (2,2) has height
0 at time 0 and a task is assigned to place down a block
here, then (2,2,1),(2,2,2) are both added as vertices. An
edge is added between two vertices if the Manhattan distance
between their xy coordinates is 1 and the difference between
their z coordinates is no more than 1.

At a particular CT node, we construct a sequence of height
maps based on when agents perform their block actions. This
sequence is used to detect conflicts. Let t j be the timestep
when agent r j performs its block action. The two new
conflicts can be resolved by adding two sets of constraints,
C1 and C2, to two children CT nodes respectively.

To solve an agent-block conflict, let C1 = {(ri,x,y, t)}
(prohibit visiting the location) and C2 = {(r j, t)} (prohibit
performing block action). To solve a height conflict, we must
consider whether the block action has been performed when
the conflict is detected. If the action has not been performed
(t < t j), let C1 = {(ri,x,y,z, t ′)|t ′ <= t j} and C2 = /0. The
former prohibits visiting the location until block action is
performed. If the action has been performed (t > t j), let
C1 = {(ri,x,y,z, t ′)|t ′ > t j)} and C2 = {(r j, t ′)|t ′ <= t + 1}.
The former prohibits visiting the location after block action,
and the latter prohibits block action until visiting the location.

The low-level plans single-agent paths to satisfy all con-
straints. A path needs to contain several waypoints: 1)
picking or placing from the depot if necessary, 2) executing
the assigned task, and 3) returning to a boundary location.

Fig. 4. (1-6) Test Structures used in baselines [3] [4] [5] (7-12) Additional,
larger structures considered in this work

TABLE I
RESULTS FOR STRUCTURE 1-6 IN FIG. 4

A - Optimization Approach [4], B - Decomposition [5], C - Ours

Structure 1 2 3 4 5 6

Sum of
Costs

A 173 124 - - - 160
B 179 128 326 263 381 161
C 197 138 405 355 400 166

Makespan
A 13 13 - - - 21
B 17 14 44 75 90 40
C 21 21 42 57 66 33

Solve
Time(s)

A 1115.0 139.0 - - - 1715.2
B 259.4 235.9 318.1 758.6 688.5 287.9
C 1.0 0.9 5.2 5.4 14.7 0.9

We use multi-label A* (MLA*) [24] to search for the optimal
path between waypoints.

VII. EXPERIMENTS AND RESULTS

We compare our approach with four existing approaches to
the MACC problem. Except where noted results are reported
for a 10x10x10 grid space, where each structure is run once,
with a run-time limit of 10,000 seconds on a system with
16GB RAM and Intel® Core™ i7-7700K CPU @ 4.20GHz
× 8 processor. We implement our algorithm in Python3
and do not use multiple threads. Methods in [4], [5] solve
optimization problems using Gurobi, which exploits multi-
threading. In Table I, we compare our approach with the
makespan optimal algorithm of [4] and the decomposition-
based suboptimal approach of [5] on six test structures from
[3]–[5] using at most 20 agents. Our approach is 100-1000x
times faster than that of [4] and more than 40x faster than [5],
with similar solution quality in sum-of-costs and makespan.

Further, we present 6 additional structures with heights
higher than 3 and observe that methods [4], [5] fail to
find solutions within 10,000s for these structures. In the
makespan-optimal baseline, the size of the optimization

TABLE II
RESULTS FOR STRUCTURE 7-12 IN FIG. 4 FOR OUR APPROACH

Structure 7 8 9 10 11 12

Sum of Costs 286 874 312 244 645 279
Makespan 41 73 79 62 353 75
Solve Time(s) 2.8 315.4 7.6 110.7 7.4 6.3

TABLE III
RESULTS FOR RANDOM STRUCTURES IN 7X7X4 ENVIRONMENT [5]

A - Optimization Approach [4], B - Decomposition [5], C - Ours

Approach A B C

Sum of Costs 83.7 54.1 102.7
Makespan 18.0 29.5 30.2
Solve Time(s) 423.5 126.0 1.2

TABLE IV
COMPARISON OF SUM OF COSTS WITH OTHER NON-OPTIMAL METHODS

Structure 1 2 3 4 5 6

Tree-based [2] 1144 836 1590 2120 2180 836
RL-based [3] 3040 1026 3056 3252 2804 1276
Ours 197 138 405 355 400 163

increases exponentially with rising makespan. Thus, these
structures which require long makespans are intractable for
[4]. Decomposing into smaller substructures as in [5] does
not reduce the makespan of each substructure enough to
make planning tractable. Our algorithm, as reported in Table
II, finds a solution for each structure. Planning requires less
than ten seconds except for structures 8 and 10. In structure
10, 107.9 of the 110.7 seconds are spent in the abstract action
search. We suspect this is due to optimal abstract action
sequences being rare for structure 10. Structure 8 (also in
Fig. 1), which is larger and exists in a 12x12x10 workspace,
spends 300 of 315 seconds in CBS. The abstract plan is
found in only 7.5 seconds.

Table III contains comparisons with [4], [5] on randomly
generated structures from [5]. On average, our approach
improves run-time 100x with comparable solution quality.

Finally, in Table IV, we present a comparison of the sum-
of-costs for the Heuristic-based Method [2] and the average
sum-of-costs of the Distributed Reinforcement Learning-
based Method [3]. Although both methods provide solu-
tions instantaneously, the average sum of costs is an or-
der of magnitude higher than our approach. The solutions
for all reported structures are visualized in https://
28shambhavi.github.io/hierarchical_macc/

VIII. CONCLUSION

In this work, we use our hierarchical planning approach to
solve the MACC problem, producing solutions two orders of
magnitude faster than baselines and maintaining comparable
solution quality. We observe that, in the MACC problem,
planning for abstract actions before computing robot actions
generates significant benefits over end-to-end planning meth-
ods. In our future work, we aim to extend the planner to
handle variations of the problem, such as planning for robots
carrying larger blocks that enable construction of structures
with canopies and hollow spaces. We also aim to integrate
bounded sub-optimal methods to reduce computation time
further and help plan for larger structures.

REFERENCES

[1] H. Durrant-Whyte, N. Roy, and P. Abbeel, TERMES: An Autonomous
Robotic System for Three-Dimensional Collective Construction, 2012,
pp. 257–264.

[2] T. Kumar, S. Jung, and S. Koenig, “A tree-based algorithm for
construction robots,” Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 2014, pp. 481–489, 05 2014.

[3] G. Sartoretti, Y. Wu, W. Paivine, T. K. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot de-
centralized collective construction,” in International Symposium on
Distributed Autonomous Robotic Systems, 2018.

[4] E. Lam, P. J. Stuckey, S. Koenig, and T. K. S. Kumar, “Exact
approaches to the multi-agent collective construction problem,” in
Principles and Practice of Constraint Programming, H. Simonis, Ed.
Cham: Springer International Publishing, 2020, pp. 743–758.

[5] A. Kesarimangalam Srinivasan, S. Singh, G. Gutow, H. Choset,
and B. Vundurthy, “Multi-agent Collective Construction using 3D
Decomposition,” arXiv e-prints, p. arXiv:2309.00985, Sept. 2023.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’10. New York, NY, USA: Association for
Computing Machinery, 2010, p. 101–110.

[7] J. Tůmová and D. V. Dimarogonas, “A receding horizon approach to
multi-agent planning from local ltl specifications,” in 2014 American
Control Conference, 2014, pp. 1775–1780.

[8] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
“Long-horizon multi-robot rearrangement planning for construction
assembly,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 239–
252, 2023.

[9] M. Ossenkopf, G. Castro, F. Pessacg, K. Geihs, and P. De Cristóforis,
“Long-horizon active slam system for multi-agent coordinated explo-
ration,” in 2019 European Conference on Mobile Robots (ECMR),
2019, pp. 1–6.

[10] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and
S. Koenig, “Lifelong multi-agent path finding in large-scale ware-
houses,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 13, pp. 11 272–11 281, May 2021.

[11] J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann,
C. Mueller, S. Koenig, and B. C. Williams, “Cooperative task and
motion planning for multi-arm assembly systems,” 2022.

[12] D. Le and E. Plaku, “Cooperative multi-robot sampling-based motion
planning with dynamics,” Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 27, no. 1, pp. 513–521,
Jun. 2017.

[13] Y. Li, X.-Y. Jiao, B. Sun, Q. Zhang, and J. Yang, “Multi-welfare-
robot cooperation framework for multi-task assignment in healthcare
facilities based on multi-agent system,” 2021 IEEE International
Conference on Intelligence and Safety for Robotics (ISR), pp. 413–
416, 2021.

[14] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” in Artificial Intelligence,
2012.

[15] A. Grushin and J. A. Reggia, “Automated design of distributed
control rules for the self-assembly of prespecified artificial structures,”
Robotics and Autonomous Systems, vol. 56, no. 4, pp. 334–359, 2008.

[16] D. S. Carvalho and B. Sengupta, “Hierarchically structured scheduling
and execution of tasks in a multi-agent environment,” 2022.

[17] P. Bercher, S. Keen, and S. Biundo-Stephan, “Hybrid planning heuris-
tics based on task decomposition graphs,” Proceedings of the Interna-
tional Symposium on Combinatorial Search, 2014.

[18] T. Cai, D. Y. Zhang, T. S. Kumar, S. Koenig, and N. Ayanian,
“Local search on trees and a framework for automated construction
using multiple identical robots: (extended abstract),” in Proceedings
of the 2016 International Conference on Autonomous Agents amp;
Multiagent Systems, ser. AAMAS ’16. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2016, p.
1301–1302.

[19] A. B. Kahn, “Topological sorting of large networks,” Commun.
ACM, vol. 5, no. 11, p. 558–562, nov 1962. [Online]. Available:
https://doi.org/10.1145/368996.369025

[20] M. C. Er, “A Parallel Computation Approach to Topological Sorting,”
The Computer Journal, vol. 26, no. 4, pp. 293–295, 11 1983.
[Online]. Available: https://doi.org/10.1093/comjnl/26.4.293

[21] D. Silver, “Cooperative pathfinding,” Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 1, no. 1, pp. 117–122, Sep. 2021. [Online].
Available: https://ojs.aaai.org/index.php/AIIDE/article/view/18726

[22] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bar-
tak, “Multi-agent pathfinding: Definitions, variants, and benchmarks,”
2019.

[23] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in Adaptive Agents
and Multi-Agent Systems, 2017.

[24] X. Zhong, J. Li, S. Koenig, and H. Ma, “Optimal and bounded-
suboptimal multi-goal task assignment and path finding,” 2022 Inter-
national Conference on Robotics and Automation (ICRA), pp. 10 731–
10 737, 2022.

