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ABSTRACT
The task of multiple, physically-separated mobile robots meeting at
a point is considered in this paper. This task, termed as rendezvous,
is studied when the mobile robots have unequal speeds. An algo-
rithm for computing the minimum time rendezvous point (denoted
by P∗) for a pair of robots moving amidst polygonal obstacles is
presented. The algorithm is based on the notion of visibility graph
and computes P∗ exactly. Comparisons with an alternate approach
based on level sets are given. An extension to rendezvous of three
robots (in minimum time), based on the notion of Apollonius cir-
cles is also presented. An experimental setup consisting of multiple
mobile robots, fabricated in-house, is described. Experiments with
the robots confirm the efficacy of the proposed algorithms.

CCS CONCEPTS
• Embedded and Cyber-Physical Systems –> Robotics, Dis-
tributed Artifical Intelligence –> Multi-Agent Systems, Con-
trol Methods –> Robotic Planning;

KEYWORDS
Mobile Robotics, Robotic Autonomy, Multi-Agent Systems, Ren-
dezvous, Minimum Time, Unequal Speeds, Obstacles

1 INTRODUCTION
Two or more autonomous robots coming together to perform a
task cooperatively is of interest in a number of applications. For
example, one mobile robot (equipped with an arm) may pick some
item from a second mobile robot and transfer it to a third. The three
robots may be in physically different locations to begin with. The
task is therefore to first bring them together. This is termed as the
rendezvous problem which we study in this paper.

The rendezvous problem has its origins in the early work on satel-
lite rendezvous [1] and search games [2]. Considerable work has
been done on this problem for mobile robots during the last decade.
The authors in [3] present a distributed algorithm for converging
autonomous (point) robots with limited visibility. The rendezvous
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problem is studied in [4] in the context of cyclic pursuit. An ap-
proach based on proximity graphs is presented in [5] while an
algorithm for rendezvous of point robots in a simply-connected
and non-convex environment with constraints on visibility sensors
is presented in [6]. A strategy to achieve rendezvous without coor-
dinates or communication between agents is presented in [7]. An
approach based on level sets is presented in [8]. Some experiments
in rendezvous are reported in [9]. Energy considerations during
rendezvous are studied in [10]. An optimal control formulation
for rendezvous of an unmanned aerial vehicle with an unmanned
ground vehicle is presented in [11] while rendezvous in the con-
text of electric sails is discussed in [12]. Other related works on
coordinated motion include [13], [14], [15], [16], [17].

While several variants of the rendezvous problem have been
studied in the past, one aspect that has not been adequately explored
isminimum time rendezvous of heterogeneous robots with constraints.
This is illustrated in Figure 1. The robot with an arm mounted
moves with lower (average) speed than the other (labelled mobile
base). The goal is to bring the two robots together. Further, the
robots face constraints in the form of obstacles in the environment.
We then pose the following question:What is the smallest time (from
start) the robots should travel before they meet ?

We address this problem with the assumption that each robot
can be represented as a point mass (similar to the assumptions
in [3], [6]). We present an algorithm for determining the point in
the plane that meets the minimum time requirement for a pair of
robots moving with unequal speeds in the absence of obstacles.
We then examine the scenario where obstacles are present in the
environment. We assume that the space occupied by machines,
furniture, etc. in an indoor environment can be represented by
polygons of arbitrary shape (they could be nonconvex) and the
location of (vertices of) the obstacles is known to every robot. We
develop an algorithm for meeting of a pair of robots, with unequal
speeds, in minimum time amidst these obstacles. We show that
the computation of minimum time location for a pair of robots
amidst polygonal obstacles takes no more than the time required
to compute the shortest path from one robot to another.

The theory is then extended to rendezvous of three robots in min-
imum time. Simulations of the algorithms developed are presented.
Comparison of the proposed algorithm for two robots amidst obsta-
cles with an alternate approach based on level sets [8] is presented.
It is observed that the proposed algorithm returns the exact mini-
mum time point amidst obstacles. An experimental setup consisting
of custom-fabricated mobile robots is then described. Experiments
with the robots are presented and they confirm the ability to ren-
dezvous without any communication amongst the robots.
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The remainder of this paper is organized as follows. Section 2
presents the definitions of terms used in the remainder of the paper.
Section 3 describes the proposed algorithms for minimum time
rendezvous of a pair of robots. Extensions to three robots are pre-
sented in section 4. Section 5 presents simulations and comparisons.
Experiments are presented in 6. Section 7 concludes the paper.

(a) Robot with Arm Mounted

(b) Mobile Base

Figure 1: Heterogeneous Robots Attempting Rendezvous

2 DEFINITIONS AND TERMINOLOGY
We assume distinct initial locations in the plane for the robots and
further the robots, in general, have unequal speeds. Given any point
P in the plane, the time taken by a robot R to arrive at P will depend
on the Euclidean distance to P (from R) as well as the speed of R.
We therefore present a definition (Definition 2.1) that is required
for describing what is meant by minimum-time rendezvous.

Definition 2.1. The time for rendezvous of two or more robots
(denoted by tp ) at a given location, P , is defined as the total time
taken by the last robot that arrives at P .

In other words, the time tp is computed as the maximum of all
times taken by the (various) robots to arrive at P . Gathering at an
arbitrary point P is not advantageous from the point of view of
energy consumption and therefore we need a point that is ‘optimal’
in some sense. This leads to identifying a point P∗ as given by
Definition 2.2.

Definition 2.2. P∗ corresponds to a location in the plane, that,
in comparison to any arbitrary location P , has a lower time for
rendezvous: tp∗ < tp , for all P .

We note that P∗ is unique and minimizes the maximum of travel
times from initial locations of all the robots. The minimum time
itself is denoted by tp∗ .

The notion of visibility graph is required in developing algo-
rithms to compute P∗ particularly in the presence of polygonal
obstacles. We define this next.

Definition 2.3. Two points, x and y, are (mutually) visible if the
line segment xy does not intersect the interior of any object. This
notion of visibility of a point pair is used to define the complete
visibility graph of an environment consisting of a set of n polygonal
objects. The complete visibility graph is a non-directed graph G
specified as follows: (i) The nodes of G are the vertices of the n
objects. (ii) Two nodes of G are connected by a line segment if and
only if either the segment joining them is an edge of one of the
polygons, or if it lies entirely in the free space except possibly at
its two endpoints.

The concept of Apollonius circle [18] is valuable for multiple
robots attempting rendezvous. Definition 2.4 captures this.

Definition 2.4. The locus of points where two robots (travelling
with different speeds) arrive simultaneously turns out to be a circle
enclosing the robot location with lower speed. This circle is known
as the Apollonius circle while the robot locations are referred to as
its foci.

3 MINIMUM TIME RENDEZVOUS OF A PAIR
OF ROBOTS

Let the two mobile robots be located atA and B and let their average
speeds be given byVa andVb respectively. We first present a result
(given by Proposition 3.1) that identifies the region of the plane
containing P∗. We then discuss about narrowing down the search
to locate P∗, in the absence of obstacles, using Va and Vb .

Proposition 3.1. The minimum time rendezvous point P∗ lies on
the line segment AB.

Proof: The time taken for rendezvous is directly proportional to the
distance between A and B. This time is minimized if the distance
between A and B is the least. The length of the line segment AB
corresponds to the least (Euclidean) distance between A and B. As
a result, the search for P∗ can be limited to the line segment AB.
Q.E.D.

3.1 Minimum Time Rendezvous of Two robots
In The Absence of Obstacles

From Definitions 2.1 and 2.2, we note that finding P∗ corresponds
to minimizing the maximum time travelled by the robots. The
coordinates of P∗ can be expressed in terms of the locations of the
robots and their speeds as given by Lemma 3.2.

Lemma 3.2. For two robots (whose locations are denoted by A
and B), travelling with speedsVa andVb respectively, the minimum
time rendezvous point P∗ is given by (1).

P∗ =
(Vb ×A +Va × B)

Va +Vb
(1)
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Proof: The time taken for rendezvous is the maximum of travel
times of all robots prior to rendezvous (Definition 2.1) and P∗ is
the location that minimizes this maximum time. For an arbitrary
location P (in AB), whose travel time from A is higher, an attempt
to minimize this time brings P closer toAwhile the opposite occurs
when minimizing the maximum time from B. Consequently, the
minimum occurs when the travel times of both robots are identical,
as given by (2).

AP∗

Va
=

BP∗

Vb
(2)

As a result, P∗ is computed as the point on AB that divides the
line segment in the ratio Va : Vb , as given by (1). Q.E.D.

An algorithm for minimum time rendezvous of a pair of robots in
the absence of obstacles is straightforward and is directly based on
Lemma 3.2. We now proceed to handle the case of an environment
with static obstacles. As indicated earlier, the area occupied by
furniture, equipment etc. can be represented by polygonal obstacles.

3.2 Minimum Time Rendezvous of a Pair of
Robots Amidst Obstacles

In the presence of obstacles, the robot locations need not be visible
(see also Definition 2.3) to each other. As a result, the search for the
minimum time rendezvous point cannot be restricted to the line
segment joining the robot locationsA and B. Theorem 3.3 describes
the location of P∗ with respect to the robot and obstacle locations.

Theorem 3.3. Minimum time rendezvous point, P∗, lies on the
shortest path from one robot (A) to the other (B).

Proof: This is an extension of the result given by Proposition 3.1.
When obstacles are present, the shortest path is not necessarily
the segment joining A and B (since it may intersect the interior
of one or more obstacles). The shortest path instead comprises of
segments whose endpoints are either A, B, or the vertices of the
polygons [19]. The minimum time rendezvous point, P∗, therefore
lies on this path. Q.E.D.

3.3 Algorithm for Minimum time Rendezvous
of Two robots Amidst Obstacles

The algorithm for minimum time rendezvous requires characteriza-
tion of the shortest path in terms of visibility graph (Definition 2.3).
This characterization is provided by Theorem 3.4. We note that A
and B can also be thought of as point polygons with one vertex
each [19].

Theorem 3.4. The shortest path is a subpath of the complete visi-
bility graph formed from the vertices of the polygonal obstacles.

Proof: The proof is a consequence of the definition of the complete
visibility graph and Theorem 3.3. Clearly, the shortest path cannot
pass through any point p in the interior of an obstacle. Further, any
path outside the obstacles that does not pass through the vertices
would have a length longer than one that is restricted to the obstacle
vertices. Q.E.D.

The algorithm for minimum time rendezvous is therefore as fol-
lows.

Algorithm Min_Time_Rendezvous_Two_Robots
INPUT: Location of robots A,B, average speeds of the robots,
namely Va and Vb , and n polygonal obstacles with a total of m
vertices.
OUTPUT: Minimum time rendezvous point P∗.
STEP 1: Construct the complete visibility graph of the environ-
ment.
STEP 2: Calculate the shortest path between A and B among n
obstacles.
STEP 3: Starting from the location of one of the robots (namely,A),
consider a line segment of length equal to that of the shortest path
calculated in step 2 and denote the segment by RiRtemp where
Ri can corresponds to A while Rtemp corresponds to a dummy
(fictitious) location of the robot.
STEP 4: Use Eq. (1) on RiRtemp to get a point P∗temp . Denote the
length of line segment from Ri to P∗temp by L.
STEP 5: Traverse along the shortest path (computed in Step 2) by
length L (obtained in Step 4) and identify two vertices (Ci and Cf ),
which appear on the path just before and after traversing by L.
STEP 6: Denote by di and df the distances from A to Ci and Cf
and use Eq. (3) to mark off P∗ on the portion of the shortest path
between Ci and Cf .

P∗ =
(df − L) ×Ci + (L − di ) ×Cf

(df − di )
(3)

Remark 1. Steps 2 to 5 of the algorithm are illustrated in Figure 2.
In Step 3 of Algorithm Min_Time_Rendezvous_Two_Robots,
one can start from B instead ofA. In Step 5,Ci (orCf ) may correspond
to the initial location ofA (or B). Steps 4 and 5 in the algorithm can be
expressed equivalently in terms of time travelled as the robot moves
from A to obtain the minimum time point P∗ and the corresponding
time tp∗ .

We assume that time overhead for turning of a robot at any corner
(of an obstacle) is accommodated in the average speed of the robot.

Figure 2: Illustration for Algorithm
Min_Time_Rendezvous_Two_Robots

Remark 2. AlgorithmMin_Time_Rendezvous_Two_Robots
has a complexity of O(m2) since construction of the visibility graph
and calculation of the shortest path dominate this. For an environment
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with polygonal obstacles having a total ofm vertices, the complete
visibility graph followed by the shorest path can be obtained inO(m2)
time [19].

4 MINIMUM TIME RENDEZVOUS OF THREE
ROBOTS

The general approach to handle the minimum time problem for
three or more robots is based on the notion of Apollonius circles
(Definition 2.4). The main result leading to the development of an
algorithm is given by Lemma 4.1.

Lemma 4.1. The minimum time rendezvous point (P∗) of three
robotsA, B andC , travelling with speedsVa ,Vb andVc corresponds to
one of the following: (i) The point of intersection of the three Apollonius
circles constructed for the three pairs of robots with the lowest time
for rendezvous or (ii) The three points obtained via Lemma 3.2 for
every pair of robot locations.

Proof:The proof for (i) is as follows. Theminimum time rendezvous
point (P∗) corresponds to a location where the three robots arrive
simultaneously. This follows from the fact that any point adjacent
to such a location would demand higher time of arrival for one of
the robots, thus increasing the overall time for rendezvous. Since,
an Apollonius circle is characterized by points that take equal time
from two robots (Definition 2.4), the point of intersection of the
three circles (one for each pair) corresponds to P∗. If the three
circles intersect at multiple locations, point with the lowest time
for rendezvous is P∗.

Suppose (i) does not hold (i.e., there is no common intersection
point). P∗ is then a function of only two robot locations and it can
be computed via Eq. (1) in Lemma 3.2. This establishes part (ii) in
the statement of the lemma. Q.E.D.

An algorithm for minimum time rendezvous of three robots in
the absence of obstacles can be directly obtained from Lemma 4.1.
We present this next.
Algorithm Three_Robots_Min_Time_Rendezvous
INPUT: Location of robots A, B and C with average speeds Va , Vb
and Vc respectively.
OUTPUT: Minimum time rendezvous point P∗.
STEP 1:Construct Apollonius circles for all the three pairs of robots
and compute all the points of intersection. Denote by P∗, the point
with lowest time for rendezvous. Proceed to Step 3. If no such
intersection occurs, go to step 2.
STEP 2: Compute the three locations for the three pairs of robots
as per Lemma 3.2 and the respective times for rendezvous. Denote
the point with least time as P∗.
STEP 3: Output the minimum time rendezvous point, namely P∗.

Steps inAlgorithmThree_Robots_Min_Time_Rendezvous are
illustrated in Figure 3.

5 SIMULATIONS AND COMPARISONS
To assess the performance and accuracy of the proposed schemes,
we have performed a simulation of the minimum time rendezvous
algorithm for two robots amidst obstacles and compared with the
scheme in [8].

Figure 3: Illustration for Algorithm
Three_Robots_Min_Time_Rendezvous; Case (a): All the
three Apollonius circles intersect, Case (b): P∗ is a function
of only two robot locations

We first briefly describe the alternate approach to minimum time
rendezvous presented in [8]. The authors in [8] address this problem
for a group of heterogeneous robots that may include ground or air
robots. The notion of level sets is introduced to solve this problem
by first computing an arrival time map for each robot, subject to
various constraints (on speed, dynamics etc.). The arrival time maps
of the robots are then combined to locate the rendezvous point. In
particular, the maximum of all the arrival time maps is computed
at each point. The location with the smallest maximum is declared
as the optimal rendezvous point.

Figure 4: Simulation of minimum time rendezvous point us-
ing level set method for two robots A and B with obstacles

We have simulated the approach in [8] for a pair of ground
(mobile) robotsA (indicated by a blue star) and B (indicated by a red
triangle) shown in Figure 4.A and B have average speeds of 1 and 3
units respectively. The coordinates of the obstacles and the robots
are given in Table 1. The arrival time maps for robots A and B are
constructed at intervals of one second. The global minimum (which
corresponds to the minimum time rendezvous point) is denoted by
P∗LS (shown in the Figure 4). It is obtained by intersection of maps
constructed for one second interval. The corresponding time for
rendezvous is 6 seconds.
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Table 1: Coordinates of robots and obstacle vertices as well as P∗ (due to proposed method) and P∗LS (due to level set approach);
Vertex labels are indicated in Figure 5

A B O11 O12 O13 O14 O21 O22 O23 O24 P∗ P∗LS
x 10 30 15 17 15 13 21 23 23 21 15.27 15.05
y 7 13 5 11 15 10 4 4 11 11 5.27 3.75

Figure 5: Simulation of minimum time rendezvous point us-
ing proposed algorithm for two robots A and B with obsta-
cles

Figure 5 shows the minimum time rendezvous point, denoted
by P∗, computed by the proposed algorithm for the same pair of
robots A and B and the same environment. The time required for
rendezvous is calculated to be 5.77 seconds. The observations based
on the simulations of the two methods ([8] and proposed) are as
follows. The level set method is computationally intensive although
it is capable of leading to a solution that is correct and complete
under resolution. The method proposed in this paper gives the exact
location of the minimum time rendezvous point using only a few
selected points in the environment, (namely vertices of obstacles)
for the computation. Hence, unlike the level set method, the pro-
posed method is computationally efficient as well as implementable
on hardware platforms such as those based on microcontrollers.

6 EXPERIMENTAL RESULTS
The proposed algorithms have also been implemented on custom-
fabricated mobile robots. Each robot is equipped with an Arduino
Uno (with ATMEGA328P-PU microcontroller), rotary encoder, bat-
tery and Pololu VNH5019 dual channel DC motor driver. The DC
motors used have a maximum speed of 21 RPM. The computations
are performed by the microcontroller on the Arduino Uno. The
Arduino Uno interacts with the Pololu motor driver via an Adafruit
PCA9685 16-Channel controller which generates the required PWM
signals for the Pololu driver. The flexibility of Adafruit PCA9685
with respect to the large number of channels (each supporting a
12-bit resolution individual PWM controller) is taken advantage of
in the design.

The first experiment involves the robot with arm mounted (A)
and mobile base (B) with average speeds of 400 cm/min and 800
cm/min respectively. Three obstacles are placed in between as

shown in Figure 6. Since the obstacle locations are known in ad-
vance, the visibility graph for the obstacles is computed off-line.
When the initial location of robots (A ≡ (30, 18), B ≡ (0, 9)) is
provided, the visibility graph is updated. The minimum time ren-
dezvous point is computed to be at (19.88,15.04). Four instants in the
experiment are provided in the snapshots in Figure 6. The approach
does not require any communication between the robots to achieve
rendezvous.

(a) Initial position of robots (b) Turning of robots from imidi-
ate obstacles

(c) Intermediate position of robots
on the shortest path

(d) Final position of robots achiev-
ing rendezvous

Figure 6: Minimum time rendezvous of two robots with un-
equal velocities amidst obstacles.

The second experiment involves three robots, A (robot with
arm mounted), B (mobile base) and C (mobile base), with average
speeds of 400 cm/min, 600 cm/min and 800 cm/min respectively.
Figure 7 shows snapshots of experiment performed. As before, a
distributed approach without any communication between robots is
followed. The task of solving equations relating to the intersection
of Apollonius circles is performed on the Arduino Uno.

7 CONCLUSION
We have considered the problem of minimum time rendezvous
of heterogeneous mobile robots travelling at unequal speeds in
this paper. Algorithms for (i) minimum time rendezvous amidst
obstacles for a pair of robots and (ii) minimum time rendezvous for
three robots are presented. Simulations of the algorithms have been
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(a) Initial position of robots

(b) Robots taking turn

(c) Intermediate position of robots

(d) Final position of robots achieving rendezvous

Figure 7:Minimum time rendezvous of three robots with un-
equal velocities.

performed. It is observed that the proposed algorithm for a pair of
robots amidst obstacles computes the minimum time rendezvous
point exactly. Comparison with an alternate approach based on
level sets is also described. Experiments with custom-fabricated
mobile robots have also been performed to verify the effectiveness
of the proposed schemes.

The proposed algorithm for minimum time rendezvous of three
robots moving with unequal speeds does not readily extend to an
environment with obstacles since it is not clear how the notion of
Apollonius circles can be extended to this setting. It would be of
interest to study the minimum time rendezvous problem for larger
number of robots amidst obstacles.
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